ESC 2010

“DIABETIC CARDIOMYOPATHY”

August 29, 2010

Clyde W. Yancy, MD, FACC, FAHA, MACP
Medical Director
Baylor Heart and Vascular Institute
&
Chief, Cardiothoracic Transplantation
Baylor University Medical Center
Dallas, TX
DISCLOSURES

• Consultant/speaker/honoraria: none since 06/31/08

• Editorial Boards: American Heart Journal, American Journal of Cardiology (associate editor); Circulation; Circulation-Heart Failure; Circulation- Quality Outcomes; Congestive Heart Failure

• Guideline writing committees: ACC/AHA, chronic HF; and ACC/AHA Guideline Taskforce

• Federal appointments: FDA: Past Chair, Cardiovascular Device Panel; ad hoc consultant, FDA; member, NIH CICS study section

• Volunteer Appointments: American Heart Association- President, American Heart Association, 2009-2010
Risk factors
- Hyperlipidemia
- Hypertension
- Diabetes
- Insulin resistance

Atherosclerosis
- LVH

Coronary thrombosis
- Myocardial ischemia
- Coronary thrombosis

Myocardial infarction
- Arrhythmia
- Loss of muscle
- Sudden death
- Remodeling
- Ventricular dilation
- Heart failure
- Death

Remodeling

Heart failure
- Death

From Risk Factors to Heart Failure: The Cardiovascular Continuum

Adapted from Dzau and Braunwald. Am Heart J. 1991;131:1244-1263.
At Risk for Heart Failure

STAGE A
At high risk for HF but without structural heart disease or symptoms of HF.

Stage B
Structural heart disease but without signs or symptoms of HF.

STAGE C
Structural heart disease with prior or current symptoms of HF.

STAGE D
Refractory HF requiring specialized interventions.

Therapy Goals
- Treat hypertension
- Encourage smoking cessation
- Treat lipid disorders
- Encourage regular exercise
- Discourage alcohol intake, illicit drug use
- Control metabolic syndrome

Drugs
- ACEI or ARB in appropriate patients for vascular disease or diabetes

Therapy Goals
- All measures under Stage A Drugs
- ACEI or ARB in appropriate patients
- Beta-blockers in appropriate patients

Development of symptoms of HF
- E.g. Patients with:
 - Previous MI
 - LV remodeling including LVH and low EF
 - Asymptomatic valvular disease

Therapy Goals
- All measures under Stages A and B
- Dietary salt restriction

Drugs For Routine Use
- Diuretics for fluid retention
- ACEI
- Beta-blockers

Drugs in Selected Patients
- Aldosterone antagonist
- ARBs
- Digitalis
- Hydralazine/nitrates

Devices In Selected Patients
- Biventricular pacing
- Implantable defibrillators

Therapy Goals
- Appropriate measures under Stages A, B, C
- Decision re: appropriate level of care

Options
- End-of-life care
- Extraordinary measures
 - Heart transplant
 - Chronic inotropes
 - Permanent mechanical support
 - Experimental surgery or drugs
<table>
<thead>
<tr>
<th>Stage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>At Risk for Heart Failure</td>
<td></td>
</tr>
<tr>
<td>STAGE A</td>
<td>At high risk for HF but without structural heart disease or symptoms of HF.</td>
</tr>
<tr>
<td>STAGE B</td>
<td>Structural heart disease but without signs or symptoms of HF.</td>
</tr>
<tr>
<td>STAGE C</td>
<td>Structural heart disease with prior or current symptoms of HF.</td>
</tr>
<tr>
<td>STAGE D</td>
<td>Refractory HF requiring specialized interventions.</td>
</tr>
</tbody>
</table>

e.g. Patients with:
- hypertension
- atherosclerotic disease
- diabetes
- obesity
- metabolic syndrome *or*

Patients
- using cardiotoxins
- with FHx CM

Therapy Goals
- Treat hypertension
- Encourage smoking cessation
- Treat lipid disorders
- Encourage regular exercise
- Discourage alcohol intake, illicit drug use
- Control metabolic syndrome

Drugs
- ACEI or ARB in appropriate patients for vascular disease or diabetes

Heart Failure
- Patients with:
 - Hypertension
 - Atherosclerotic disease
 - Diabetes
 - Obesity
 - Metabolic syndrome
 - Cardiotoxins
 - FHx CM
Diabetic Cardiomyopathy

- Definition: “a distinct entity characterized by the presence of abnormal myocardial performance or structure in the absence of epicardial coronary artery disease, hypertension and significant valvular disease”

- Original description: Rubler et al. in 4 diabetic patients with HF but no evidence of CAD by angiography or by pacing [lactate production]

- Phenotype:
 - Increased LVEDP
 - Normal LVEDV
 - Decreased LV compliance

Rubler et al. American Jnl of Cardiology 30. 1972
Diabetic Cardiomyopathy

• Epidemiology
 ▪ Diabetes affects 180 million worldwide
 ▪ 2/3 of patients with established CVD have impaired glucose homeostasis; affects 30% of HF patients
 ▪ Every 1% increase in Hgb A$_{1c}$ leads to an 8% increase in HF; in UKPDS, for Hgb A$_{1c}$ < 6%, 2.3 HF events/100 person-years; but for > 10%, 11.9 HF events/100 person – years
 ▪ Prevalence of HF in general population: 1-4%
 ▪ Prevalence of HF in diabetic population: 15%
Epidemiology of Diabetic CHF

- Framingham Study
 - 2 diabetic males
 - 5 diabetic females
 - 4 young diabetic males
 - 8 young diabetic females

- Nursing home data
 - Initially without CHF
 - Over 43 months, 23% non-diabetic, 39% with diabetes

Diabetic Cardiomyopathy

• Increased risk of HF in diabetic patients with retinopathy c/w a microvascular etiology of diabetic cardiomyopathy [Cheung N, et al. JACC, 2008; 51: 1573 - 1578]

• Retinal arteriolar narrowing associated with LV remodeling [ref. MESA]
Diabetic Cardiomyopathy

- Pathologically characterized by ventricular hypertrophy, myocardial fibrosis and fat droplet deposition
- Other physical characteristics:
 - Early changes in diastolic function — affects up to 75% asymptomatic diabetic patients
 - Collagen deposition
 - Presence of advanced glycosylation end products [AGEs]
 - Late compromise of LV systolic function
 - Earliest evidence is seen in long-axis systolic dysfunction with NL EF

Diabetic Cardiomyopathy

• Diagnosis
 - ECHOCARDIOGRAPHY- diagnosis of LVH and with pulsed wave Doppler, inferences RE: diastolic function; Tissue Doppler aids in the assessment of LV strain
 - CARDIAC MRI- excellent for measuring LV mass
 - CLINICAL! – must rule out CAD, HTN, valvular heart disease and other forms of cardiomyopathy
Diabetic Cardiomyopathy

• Mechanisms/Pathophysiology
 ▪ Hyperglycemia
 • Increased ROS
 ▪ Hyperinsulinemia
 • Activation of SNS & RAAS
 ▪ Advanced Glycation End Products
 • Increased due to oxidative stress
 • RAGE [receptor for AGE] is also increased
 • Collagen Deposition
 • Expression of NF-kB and change in cardiac myosin expression
 ▪ Enhanced Free Fatty Acid Utilization
 • Leads to FFA accumulation & lipotoxicity
PARP- poly ADP-ribose polymerase
PKC- protein kinase C
DAG- diacylglycerol
Diabetes Mellitus

Elevated FFAs
(dominant energy source for myocardium in diabetics)
- Due to increased beta-oxidation

- Ca transporter protein dysfunction
- (-) PDH
- Long chain acyl carnitines (+)
 - Ceramide (+)
 - Glycolytic intermediates (+)
 - Uncoupling of oxidative phosphorylation

- Impaired contraction and relaxation
- Apoptosis

DIABETIC CARDIOMYOPATHY
Hyperglycemia → Cytokine and RAAS Activation → Collagen/Fibrotic Tissue Deposition → Advanced Glycosylation → Stiffened Myocardium → Myocardial Dysfunction
Diabetic Cardiomyopathy

Is diabetic microangiopathy a factor?

• No increase in lactate production with cardiac pacing
• Endothelial dysfunction may lead to repeated vaso-constriction, reperfusion injuries, and myocardial dysfunction
• Increased small vessel permeability leading to interstitial edema, fibrosis, and myocardial dysfunction
• Diabetic subjects have a defect in reactive angiogenesis in response to ischemia that could lead to myocardial dysfunction

HMGB1: the missing link between diabetes mellitus and heart failure

- HMGB1- high mobility group box-1 protein; initiates a robust signal for host defense in response to cell injury or death
- Mouse cardiomyocytes exposed to elevated glucose expressed HMGB1 and increased binding to RAGE; followed by increased NF-kB binding activity and sustained increases in TNF-alpha and IL-6 expression
- **HMGB1 can be inhibited by Box A treatment**

Volz, Seidel, Laohachewin et al. Basic Research in Cardiology July 2010
Diabetic Cardiomyopathy- SUMMARY

- Likely a unique clinical entity but debate remains
- Requires the absence of CAD and the presence of LVH, fibrosis and decreased compliance
- Cause is likely multifactorial but clearly related to hyperglycemia, hyperinsulinemia, enhance FFA utilization, and oxidative stress
- No specific therapies and clearly unaffected by current anti-diabetic agents [esp., TZDs]
- Future considerations involve earlier and more precise diagnosis, identification of the culprit pathophysiology and elucidation of new treatment targets, e.g. HMGB1