STEM CELLS & TISSUE ENGINEERING
ASSOCIATED WITH POLYESTER MESH
SUPPORT DEVICE
FOR ISCHEMIC CARDIOMYOPATHY

JC Chachques, A Shafy, T Fink, V Zachar, P Bruneval, A Carpentier

Pompidou Hospital, Paris, France
Aalborg University, Denmark
Cell transplantation has emerged as a novel strategy for myocardial regeneration.

Preliminary clinical results showed that cell bio-retention and engraftment within infarct is low and that extracellular matrix degradation and myocardial fibrosis contributes to LV dilatation and adverse remodeling.
Rationale of the Study

- The failing cardiac muscle needs to be supported to decrease ventricular wall stress.

- Isolated ventricular constraint therapy failed to demonstrate clear benefits.

- The goal of this experimental study is to evaluate intranfarct cell therapy associated with a polyester mesh cardiac wrap, using a collagen matrix as interface.
1. Ischemia - Reperfusion myocardial model (I/R)
2. Intrainfarct stem cell therapy
3. Ventricular constraint using a polyester mesh (Acorn-CorCap)
4. Implantation of cell-seeded collagen matrix between the heart and the polyester mesh
Surgical Steps

Cells Therapy

Mesh Wrap

Collagen Interface
GROUPS (n = 15 sheep)

Ischemia (60 min) - Reperfusion (I/R)

Group 1: I/R without treatment (Control)
Group 2: I/R + Polyester mesh wrapping
Group 3: I/R + Stem Cells + Mesh wrapping
STUDY DESIGN

- Fat tissue biopsy
- Myocardial Ischemia + Cell therapy and/or Ventricular Constraint
 - Echocardiography
- Echocardiography Autopsy Histology

Timeline:
- J0: Cell Cultures
- J30
- J90
CELL THERAPY
In cooperation with Aalborg University, Denmark

Autologous adipose tissue derived stem cells (ASC)

- From sheep thoracic wall
- Cultivated in hypoxic conditions (5% oxygen)
- Labeled with BrdU (incorporated in cell ADN)

ADVANTAGES

- Easy sample removal (liposuction)
- Adipose tissue 100 times more abundant than bone marrow
- ASC can differentiate in endothelial cells and cardiomyocytes?
ADVANTAGES OF HYPOXIC CELL PRECONDITIONING

- STIMULATION OF PROTEINS EXPRESSION:
 HIF-1 (hypoxia-inducible factor), ANGIOPOIETIN-1, VEGF

- REDUCTION OF CELLULAR APOPTOSIS and CASPASE-3 ACTIVATION

- ALLOWS CELL TRAINING TO SURVIVE IN ISCHEMIC ENVIRONMENT
Methods

Myocardial Ischemia - Reperfusion

Cardiac Wrapping after Cell Tx
RESULTS

ECHOCARDIOGRAPHY

Groups	LV end-diastolic Vol. (mL)		LV EF (%)		Deceleration Time (ms)				
-------------------------	---------------------------								
	Pre Ischem.	Post ischem	3 mois	Pre Ischem.	Post ischem	3 mois	Pre ischem	Post ischem	3 mois
Control	39±2.5	42.6±5.3	65±6.3	68.1±2.4	41±1.8	34.8±3.6	217±9.1	139±8.2	152±5.5
Mesh Wrap	37.4±3.1	39.8±4.5	35.6±5.1	67.5±1.6	39.7±2	44.1±2.3	212±6.1	142±7.3	136±4.7
Stem Cells + Mesh Wrap	38±3	42.4±4.3	32.6±4.1	68±2.1	38.8±1.9	55.8±3.8	215±8.0	140±6.3	195±9.5

RESULTS
RESULTS

ECHOCARDIOGRAPHY at 3 MONTHS

Control Group

Cell Tx + Cardiac Wrapping
Ventricular Constraint
Interface Heart - CorCap

Cell seeded collagen matrix
Treatment with Adipose Stem Cells

Myocardial Infarction

Angiogenesis
CONCLUSIONS

- Stem cell therapy reduces infarct size and fibrosis
- Ventricular wrapping limits adverse postischemic remodeling
- Collagen scaffold improves cell engraftment and reduces epicardial fibrosis
Cellular and tissue engineering associating a regenerative biological approach with a prosthetic support device should play a positive role in the treatment of ischemic heart failure.
The application of bioactive molecules and the recent development of nano-bio-technologies should open the door for the creation of « bioartificial myocardium »