Exercise Pulmonary Hypertension predicts the Occurrence of Symptoms in Asymptomatic Degenerative Mitral Regurgitation

Julien Magne, PhD, Kim O’Connor, MD, Giuseppe Romano, MD, Marie Moonen, MD, Luc A. Piérard, MD, PhD, FACC, FESC, Patrizio Lancellotti, MD, PhD.

ESC 2010
YIA Session
Conflict of Interest Disclosure

Dr Magne Julien: None

Dr O’Connor Kim: None

Dr Romano Giuseppe: None

Dr Moonen Marie: None

Pr Piérard Luc A: None

Pr Lancellotti P: None
Introduction

✓ The management and the timing of surgery of patients with asymptomatic degenerative mitral regurgitation (MR) is controversial.

✓ Resting (≥50mmHg) and exercise (≥60mmHg) pulmonary hypertension (PHT) are criteria for surgical decision-making (ACC/AHA: IIa, C) in patients with severe degenerative MR.

✓ Exercise PHT may develop in patients with degenerative MR, even when resting systolic pulmonary arterial pressure (SPAP) is normal.
Objectives

✓ The determinants of exercise-induced PHT in patients with asymptomatic degenerative MR have not been evaluated.

✓ The aims of this study were to identify

(1) the echocardiographic determinants of exercise SPAP and PHT and

(2) the impact of exercise PHT on symptom-free survival in asymptomatic patients with degenerative MR.
Methods

✓ Consecutive asymptomatic patients (n=78) with ≥ moderate MR (effective regurgitant orifice area [ERO] >20mm²; regurgitant volume [RV] >30ml) and with preserved LV systolic function (LV ejection fraction >60%; LV end-systolic diameter <45mm).

✓ Resting and exercise Doppler–echocardiography

✓ MR quantification:

PISA Method

- ERO = 28mm²
- RV = 43ml
- r = 8.1 mm

Doppler Method

- RV = Mitral SV – LVOT SV
- ERO = RV/ MR
- TVI = 152cm
Impact of Exercise on SPAP

Exercise-induced changes in SPAP

- Resting SPAP: 30±11 mmHg
- Exercise SPAP: 53±17 mmHg

Prevalence of PHT

- Resting PHT (SPAP ≥ 50mmHg): 16%
- Exercise PHT (SPAP ≥ 60mmHg): 46%

p<0.0001
p=0.0003
Demographic and Clinical Data

<table>
<thead>
<tr>
<th>Variables</th>
<th>All Patients (n=78)</th>
<th>No Ex-PHT (n=42, 54%)</th>
<th>Ex-PHT (n=36, 46%)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>61±13</td>
<td>57±14</td>
<td>65±11</td>
<td>0.006</td>
</tr>
<tr>
<td>Male gender, n (%)</td>
<td>44 (58)</td>
<td>19 (45)</td>
<td>25 (69)</td>
<td>0.03</td>
</tr>
<tr>
<td>Body mass index, kg.m⁻²</td>
<td>26±4</td>
<td>27±4</td>
<td>26±4</td>
<td>0.27</td>
</tr>
<tr>
<td>Heart rate, bpm</td>
<td>73±11</td>
<td>73±11</td>
<td>72±11</td>
<td>0.69</td>
</tr>
<tr>
<td>Hypertension, n (%)</td>
<td>43 (55)</td>
<td>18 (43)</td>
<td>25 (69)</td>
<td>0.07</td>
</tr>
<tr>
<td>Hypercholesterolemia, n (%)</td>
<td>16 (20)</td>
<td>7 (17)</td>
<td>9 (25)</td>
<td>0.53</td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
<td>8 (10)</td>
<td>3 (7)</td>
<td>5 (14)</td>
<td>0.72</td>
</tr>
<tr>
<td>Smoker, n (%)</td>
<td>27 (35)</td>
<td>13 (30)</td>
<td>14 (39)</td>
<td>0.62</td>
</tr>
<tr>
<td>Mitral valve prolapse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anterior, n (%)</td>
<td>5 (7)</td>
<td>2 (5)</td>
<td>5 (14)</td>
<td>0.24</td>
</tr>
<tr>
<td>Posterior, n (%)</td>
<td>37 (47)</td>
<td>17 (40)</td>
<td>20 (56)</td>
<td>0.27</td>
</tr>
<tr>
<td>Both, n (%)</td>
<td>36 (46)</td>
<td>23 (55)</td>
<td>13 (36)</td>
<td>0.16</td>
</tr>
<tr>
<td>Mitral Flail, n (%)</td>
<td>8 (10)</td>
<td>3 (7)</td>
<td>5 (14)</td>
<td>0.46</td>
</tr>
</tbody>
</table>
Echocardiographic Data

<table>
<thead>
<tr>
<th>Variables</th>
<th>All Patients (n=78)</th>
<th>No Ex-PHT (n=42, 54%)</th>
<th>Ex-PHT (n=36, 46%)</th>
<th>p-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resting LV function</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVES volume, ml</td>
<td>36±11</td>
<td>35±12</td>
<td>38±12</td>
<td>0.27</td>
</tr>
<tr>
<td>LVED volume, ml</td>
<td>114±35</td>
<td>109±34</td>
<td>123±37</td>
<td>0.015</td>
</tr>
<tr>
<td>LV ejection fraction, %</td>
<td>69±6</td>
<td>68±5</td>
<td>69±6</td>
<td>0.42</td>
</tr>
<tr>
<td>E/Ea ratio</td>
<td>14±5</td>
<td>13±4</td>
<td>16±5</td>
<td>0.01</td>
</tr>
<tr>
<td>Exercise LV function</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LVES volume, ml</td>
<td>31±16</td>
<td>33±20</td>
<td>31±11</td>
<td>0.59</td>
</tr>
<tr>
<td>LVED volume, ml</td>
<td>106±39</td>
<td>103±39</td>
<td>111±39</td>
<td>0.37</td>
</tr>
<tr>
<td>LV ejection fraction, %</td>
<td>72±9</td>
<td>70±9</td>
<td>71±10</td>
<td>0.64</td>
</tr>
<tr>
<td>E/Ea ratio</td>
<td>14.5±5</td>
<td>14±5</td>
<td>15±5</td>
<td>0.38</td>
</tr>
<tr>
<td>Resting LA volume, ml</td>
<td>71±24</td>
<td>74±27</td>
<td>73±21</td>
<td>0.86</td>
</tr>
<tr>
<td>Exercise LA volume, ml</td>
<td>81±29</td>
<td>83±35</td>
<td>87±26</td>
<td>0.56</td>
</tr>
<tr>
<td>Mitral regurgitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resting ERO, mm²</td>
<td>43±20</td>
<td>43±23</td>
<td>42±16</td>
<td>0.83</td>
</tr>
<tr>
<td>Exercise ERO, mm²</td>
<td>48±26</td>
<td>42±27</td>
<td>55±23</td>
<td>0.03</td>
</tr>
<tr>
<td>Resting RV, mm</td>
<td>71±27</td>
<td>73±35</td>
<td>69±20</td>
<td>0.55</td>
</tr>
<tr>
<td>Exercise RV, ml</td>
<td>73±36</td>
<td>65±39</td>
<td>83±28</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Exercise-induced Changes in Degenerative MR

32% of patients increased significantly MR severity (RV>15ml, ERO>10mm2) during exercise.
Exercise-induced changes in MR according to Exercise PHT

Regurgitant Volume

Changes in RV, ml

<table>
<thead>
<tr>
<th></th>
<th>No Ex-PHT</th>
<th>Ex-PHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes, ml</td>
<td>-5±3.6</td>
<td>12.6±4</td>
</tr>
<tr>
<td>p</td>
<td>0.004</td>
<td></td>
</tr>
</tbody>
</table>

Effective Regurgitant Orifice

Changes in ERO, mm²

<table>
<thead>
<tr>
<th></th>
<th>No Ex-PHT</th>
<th>Ex-PHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Changes, mm²</td>
<td>-1±2</td>
<td>9±2.5</td>
</tr>
<tr>
<td>p</td>
<td>0.006</td>
<td></td>
</tr>
</tbody>
</table>
Correlations between Exercise-Induced Changes in MR and in SPAP

- Stop for dyspnea

\[r = 0.64, \quad p < 0.0001 \]

\[r = 0.63, \quad p < 0.0001 \]
Determinants of Exercise PHT

Impact of resting SPAP on Changes in SPAP

- Increase in MR
- No change in MR
- Decrease in MR

Multivariate analysis to determine Exercise PHT

- Δ LVEF
- Δ LVEDV
- Age
- Ex. ERO
- Rest. SPAP

- OR=0.87, p=NS
- OR=0.93, p=NS
- OR=1.05, p=NS
- OR=1.1, p=0.02
- OR=1.15, p=0.01

Correlation:
- r=0.09, p=NS

Changes in SPAP, mmHg

- Resting SPAP, mmHg
- Odds-ratio (OR)
Impact on Symptom-free Survival

Resting PHT (SPAP ≥ 50mmHg)

- Symptom-free survival, %
 - 100
 - 80
 - 60
 - 40
 - 20
 - 0

Follow-up, months

- p=0.04
- Adjusted HR=2.1, p=NS

Exercise PHT (SPAP ≥ 60mmHg)

- Symptom-free survival, %
 - 100
 - 80
 - 60
 - 40
 - 20
 - 0

Follow-up, months

- 75±7%
- 35±8%

p<0.0001

Adjusted HR=3.4, p=0.002
Exercise PHT to Predict Onset of Symptoms

ROC curves

- **Sensitivity**
 - Exercise SPAP >56mmHg
 - Exercise SPAP >60mmHg
 - Resting SPAP >36mmHg
 - Resting SPAP >50mmHg

- **100-Specificity**
 - Exercise SPAP
 - Resting SPAP

- **Prediction of symptoms**

<table>
<thead>
<tr>
<th>Variables</th>
<th>Sensi.</th>
<th>Specif.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise SPAP >56mmHg</td>
<td>82</td>
<td>73</td>
</tr>
<tr>
<td>Exercise SPAP >60mmHg</td>
<td>71</td>
<td>78</td>
</tr>
<tr>
<td>Resting SPAP >36mmHg</td>
<td>72</td>
<td>56</td>
</tr>
<tr>
<td>Resting SPAP >50mmHg</td>
<td>25</td>
<td>95</td>
</tr>
</tbody>
</table>

- **AUC**: 0.67 vs. 0.77
- **p=0.032**
Conclusions

✓ Exercise PHT (SPAP ≥60 mmHg) is frequent in patients with asymptomatic degenerative MR.

✓ Exercise-induced changes in SPAP are unrelated to resting SPAP.

✓ Changes in MR severity during exercise are the main determinants of exercise-induced changes in systolic PAP and in exercise PHT.

✓ Exercise PHT is associated with reduced symptom-free survival and is more accurate than resting PHT to predict the occurrence of symptoms.
Thank you for your attention.
Prediction of Exercise SPAP

Predicted Ex. SPAP =

$$0.3 \times \text{Resting SPAP} + 0.1 \times \text{Age} + 0.07 \times \text{LVED vol} + 0.6 \times \text{E/Ea} + 0.08 \times \text{TP Sa} + 36$$

Exercises SPAP, mmHg (measured)

$r=0.91$

$p<0.0001$
Prediction of Exercise PHT

- LVED volume: AUC=0.83
- Resting SPAP: AUC=0.80
- E/Ea ratio: AUC=0.90
- Mean TP Sa: AUC=0.82
- Age: AUC=0.65

- Predicted Ex. SPAP AUC=0.97 (p<0.01)

Best cut-off:

- Predicted Ex. SPAP: 58 mmHg
- Sensitivity: 98%
- Specificity: 85%
Outcome

✓ Follow-up (FU) collection was complete in 78 patients (100%) with a mean FU = 22±13 months

✓ During FU: 38 (49%) patients developed symptoms, 4 (5%), atrial fibrillation

✓ Hospitalization: 5 patients for congestive heart failure
 1 patients for syncope
 1 patients for acute pulmonary edema

✓ Surgery: 25 (32%) patients underwent mitral valve surgery
 20 mitral valve repair vs. 5 mitral valve relacement

✓ No operative mortality and 5 long-term postoperative deaths, 20 patients with no cardiac event following surgery
Agreement between PISA and Doppler Methods at Rest

Larger ERO and RV with Doppler than with PISA method

$r=0.87; p<0.0001$
Agreement between PISA and Doppler Methods at Peak Exercise

Similar results during exercise than at rest

$r = 0.84; p < 0.0001$
Exercise-induced changes in MR

Regurgitant Volume, ml

<table>
<thead>
<tr>
<th></th>
<th>Rest</th>
<th>Exercise</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>77±22</td>
<td>81±31</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Effective Regurgitant Orifice, mm²

<table>
<thead>
<tr>
<th></th>
<th>Rest</th>
<th>Exercise</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>48±14</td>
<td>53±20</td>
<td>0.002</td>
</tr>
</tbody>
</table>
Impact of Exercise-induced increase in MR on Symptom-free Survival

Follow-up, months

Symptom-free survival, %

Changes in RV<15ml

Changes in RV≥15ml

Unadjusted HR=1.8, 95% CI: 1.2-2.4

p=0.0015

53±12%

67±8%

81±6%

26±11%
Conclusion (1)

• As in functional MR, degenerative MR due to mitral valve prolapse can be dynamic.

• Degenerative MR may significantly increase (RV≥15ml, ERO≥10mm²) during exercise in > 30 % of patients.

• Changes in MR severity are associated with reduced symptom-free survival.

• How to manage asymptomatic patients with preserved LV function and significant exercise-induced changes in MR?
Exercise Pulmonary Hypertension

✓ Exercise pulmonary hypertension (PHT) may develop in patients with degenerative MR, even when resting systolic pulmonary arterial pressure (SPAP) is normal.

✓ Exercise PHT (≥60mmHg) is a criterion for surgical decision-making in patients with severe degenerative MR (Class IIa, ACC/AHA).

✓ There is very few studies to support this recommendation.

✓ What is the impact of exercise-induced changes in MR on systolic pulmonary arterial pressure?
Impact of Exercise on SPAP

Exercise-induced changes in SPAP

- **Resting SPAP**: 30 ± 11
- **Exercise SPAP**: 53 ± 17

Significance: p < 0.0001

Prevalence of PHT

- **Resting PHT**: 16%
- **Exercise PHT**: 48%

Significance: p = 0.0003