Myocardial Fibrosis in Heart Failure

Dr Leah Iles, MBChB, FRACP
The Alfred Hospital and Baker IDI Heart and Diabetes Research Institute, Vic, Australia
DECLARATION OF CONFLICT OF INTEREST

• Nothing to declare
Myocardial fibrosis

- Present in all aetiologies of heart failure
- Focal/regional (replacement fibrosis)
- Diffuse (reactive interstitial fibrosis)

Mewton et al. JACC 2011;57:891–903
Fibrosis and MRI
Myocardial Gadolinium Kinetics

Contrast Injection

Delayed Enhancement

Normal Myocardium

Scarred Myocardium

>10 min
LGE identifies regional but not diffuse myocardial fibrosis.
Diffuse myocardial fibrosis evaluated with cardiac magnetic resonance imaging predicts heart failure symptoms in non-ischaemic cardiomyopathy

Aim

To establish the relationship between non-invasive assessment of diffuse myocardial fibrosis and symptoms of heart failure
Quantifying Diffuse Fibrosis

• As the inversion time increases there are alterations in tissue signal intensity

• Ten images taken (mid-ventricular short axis) with varying inversion times (50-1000ms) and the entire myocardium was identified for each image

• Images were then processed to generate T_1 maps
Calculating T_1 Relaxation Time
9 patients post-transplantation

Histologic collagen content quantified from endomyocardial biopsy sample

Correlated with post-contrast T₁ time on CMR

Iles et al JACC 2008;52:1574–80
T₁ times shorten in heart failure

- T₁ mapping
- 25 CCF
- 20 controls

- T₁ times shorter in CCF cf controls
 383±17ms vs. 564±23ms, p<0.0001

- T₁ times shorter in CCF even when LGE+ areas were excluded
 429±22ms vs 564±23ms, p<0.0001

Iles et al JACC 2008;52:1574–80
Diastology, collagen and heart failure symptoms

- LV stiffness correlates with myocardial collagen fraction in hypertensive pts
 - *Diez et al Circ 2002;105:2512-7*

- Diastology correlates with NYHA class in hypertrophic cardiomyopathy
 - *Matsumura et al Heart 2002 Mar;87(3):247-51*
Diastology and collagen in HFNEF

- 26 pts with HFNEF
- 15 controls

Kasner et al JACC 2011;57:977–85
Methods

• 75 patients with non-ischaemic cardiomyopathy
 – Mean age = 55±13 yrs
 – 67% male
 – Mean LVEF=33±14%

• Patients were excluded if clinically unstable, acute myocarditis, contraindications to MRI (including device therapy)

• Clinical data including NYHA class collected
Methods

- Cardiac MRI successfully completed in all 75 patients
- In addition to standard imaging, post-contrast T_1 mapping sequence acquired
- Experienced cardiologist blinded to clinical parameters calculated myocardial T_1 times
Univariate Predictors of NYHA Class

<table>
<thead>
<tr>
<th></th>
<th>NYHA I/II (n=52)</th>
<th>NYHA III/IV (n=23)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>56±14</td>
<td>52±12</td>
<td>0.79</td>
</tr>
<tr>
<td>LVEF</td>
<td>36±14</td>
<td>25±11</td>
<td><0.01</td>
</tr>
<tr>
<td>LVEDVI</td>
<td>133±50</td>
<td>172±50</td>
<td><0.01</td>
</tr>
<tr>
<td>Male</td>
<td>34/52 (65%)</td>
<td>16/23 (70%)</td>
<td>0.94</td>
</tr>
<tr>
<td>LGE</td>
<td>26/52 (50%)</td>
<td>13/23 (57%)</td>
<td>0.94</td>
</tr>
<tr>
<td>T₁ time</td>
<td>459±125</td>
<td>378±85</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Univariate Analysis of T₁ Times

<table>
<thead>
<tr>
<th></th>
<th>Pearson’s r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>-0.005</td>
<td>0.97</td>
</tr>
<tr>
<td>LVEF</td>
<td>0.191</td>
<td>0.10</td>
</tr>
<tr>
<td>LVEDVI</td>
<td>-0.195</td>
<td>0.09</td>
</tr>
<tr>
<td>NYHA</td>
<td>-0.275</td>
<td>0.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gender</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>= 410±107ms</td>
<td>= 482±131ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LGE</th>
<th>LGE+ = 437±124ms</th>
<th>LGE- = 432±117ms</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.86</td>
</tr>
</tbody>
</table>
NYHA Class correlates with post-contrast T₁ time in heart failure

- T₁ times shortened as NYHA class increased

- NYHA I/II = 459 ± 125 ms vs NYHA III/IV = 378 ± 85 ms (p=0.02)
Multivariate Predictors of NYHA Class

<table>
<thead>
<tr>
<th>Predictor</th>
<th>partial r</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>LVEDVI</td>
<td>0.106</td>
<td>0.38</td>
</tr>
<tr>
<td>LVEF</td>
<td>-0.209</td>
<td>0.08</td>
</tr>
<tr>
<td>Male</td>
<td>-0.099</td>
<td>0.41</td>
</tr>
<tr>
<td>T_1 time</td>
<td>-0.239</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Diastology and T_1 Times

- How does this relate to diastolic function?
- 13/75 with echocardiogram within 7 days of CMR (mean 2±2 days)
- Diastology assessed by a cardiologist blinded to CMR findings
Diastology and T_1 Times
(within 7 days)

$r=0.67$, $p=0.01$

$n=13$
Conclusion

Contrast-enhanced cardiac MRI using T_1 mapping quantifies diffuse myocardial fibrosis, which is a significant contributor to symptoms of heart failure in non-ischaemic cardiomyopathy
Acknowledgements

Dr Andrew Taylor
Prof David Kaye
Dr Catherine Jaworski
Dr Andris Ellims

National Health and Medical Research Council, Australia
Alfred Heart Centre, Alfred Hospital VIC
Baker IDI Heart and Diabetes Research Institute VIC

Thank you for your attention