High-dose statins prior to carotid interventions

Marco De Carlo, MD, PhD
Cardiothoracic Department
University of Pisa, Italy
Conflicts of interest

I do not have any potential conflict of interest
Statins and carotid artery disease

1. Excellent evidence (multiple large RCTs) of the benefits of statins for **primary and secondary prevention of stroke** in patients with cardiovascular disease

2. Some evidence (large retrospective studies) that **being on statins BEFORE CEA** reduces peri-operative risk of death, MI and stroke

3. Very little evidence (few retrospective studies) that **being on statins BEFORE CAS** reduces peri-procedural risk of stroke
Statins and carotid artery disease

4. Some evidence (small prospective studies) that short-term (≤ 6 months) statin treatment in patients with carotid stenosis positively modifies carotid plaque morphology.

5. Good evidence (multiple RCTs) that very short-term high-dose statin treatment BEFORE PCI reduces peri-procedural MI.

6. Almost no evidence on high-dose statins pre-treatment before either CEA or CAS.
Statins and carotid artery disease

1. Excellent evidence (multiple large RCTs) of the benefits of statins for primary and secondary prevention of stroke in patients with cardiovascular disease.

2. Some evidence (large retrospective studies) that being on statins BEFORE CEA reduces peri-operative risk of death, MI and stroke.

3. Very little evidence (low-quality retrospective studies) that being on statins BEFORE CAS reduces peri-procedural risk of stroke.
<table>
<thead>
<tr>
<th>10% LDL reduction:</th>
<th>relative risk reduction 7.5% (2.3–12.5) overall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>relative risk reduction 13.5% (7.7–18.8) for primary prevention of stroke</td>
</tr>
<tr>
<td>1 mmol/L LDL reduction</td>
<td>relative risk reduction 21.1% (6.3–33.5) overall</td>
</tr>
<tr>
<td></td>
<td>relative risk reduction 35.9% (21.7–47.6) for primary prevention of stroke</td>
</tr>
<tr>
<td>Recommendations</td>
<td>Class<sup>a</sup></td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
</tr>
<tr>
<td>In patients at VERY HIGH CV risk (established CVD, type 2 diabetes, type 1 diabetes with target organ damage, moderate to severe CKD or a SCORE level ≥10%) the LDL-C goal is <1.8 mmol/L (less than ~70 mg/dL) and/or ≥50% LDL-C reduction when target level cannot be reached.</td>
<td>I</td>
</tr>
</tbody>
</table>
ESC Guidelines on PAD

<table>
<thead>
<tr>
<th>Recommendations</th>
<th>Class (^a)</th>
<th>Level (^b)</th>
<th>Ref (^c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients with PAD who smoke should be advised to stop smoking.</td>
<td>I</td>
<td>B</td>
<td>48</td>
</tr>
<tr>
<td>All patients with PAD should have their LDL cholesterol lowered to < 2.5 mmol/L (100 mg/dL), and optimally to < 1.8 mmol/L (70 mg/dL), or ≥ 50% when the target level cannot be reached.</td>
<td>I</td>
<td>C(^d)</td>
<td>-</td>
</tr>
</tbody>
</table>

ESC Guidelines on PAD. Eur Heart J 2011, in press
Statins and carotid artery disease

1. Excellent evidence (multiple large RCTs) of the benefits of statins for primary and secondary prevention of stroke in patients with cardiovascular disease

2. Some evidence (large retrospective studies) that being on statins BEFORE CEA reduces peri-operative risk of death, MI and stroke

3. Very little evidence (low-quality retrospective studies) that being on statins BEFORE CAS reduces peri-procedural risk of stroke
Benefits of statin pre-treatment on perioperative stroke in CEA

Statins and carotid artery disease

1. Excellent evidence (multiple large RCTs) of the benefits of statins for primary and secondary prevention of stroke in patients with cardiovascular disease

2. Some evidence (large retrospective studies) that being on statins BEFORE CEA reduces peri-operative risk of death, MI and stroke

3. Very little evidence (few retrospective studies) that **being on statins BEFORE CAS** reduces peri-procedural risk of stroke
Statin pre-treatment before CAS reduces procedural complications

Retrospective registry of 180 pts undergoing CAS for symptomatic carotid stenosis:

- 127 patients not pre-treated with statins
- 53 patients pre-treated with statins (mainly atorvastatin) for ≥1 week

Baseline LDL-C was 115 ± 37 vs. 129 ± 42mg/dL (P>0.2)

Groeschel K. Radiol 2008;240:145-51
Statin pre-treatment before CAS reduces procedural complications

<table>
<thead>
<tr>
<th>Event</th>
<th>With Preprocedural Statin Therapy (n = 53)</th>
<th>Without Preprocedural Statin Therapy (n = 127)</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minor stroke</td>
<td>2 (4)</td>
<td>14 (11)</td>
<td>NS</td>
</tr>
<tr>
<td>Major stroke</td>
<td>0</td>
<td>1 (0.8)</td>
<td>NS</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>0</td>
<td>2 (2)</td>
<td>NS</td>
</tr>
<tr>
<td>Death</td>
<td>0</td>
<td>2 (2)</td>
<td>NS</td>
</tr>
<tr>
<td>Total</td>
<td>2 (4)</td>
<td>19 (15)</td>
<td><.05</td>
</tr>
</tbody>
</table>

Groeschel K. Radiol 2008;240:145-51
Clinical benefit of statin treatment before CAS

- Retrospective evaluation of 1083 CAS patients:
 - 465 (43%) on statins before and after CAS
 - 618 (57%) not on statins before CAS (no information on statins after CAS)
- Statin patients were significantly younger, had more frequently CAD and dyslipidaemia, and were more often on clopidogrel

Clinical benefit of statin treatment before CAS

Procedural results

<table>
<thead>
<tr>
<th></th>
<th>No statins (n = 618)</th>
<th>Statins (n = 465)</th>
<th>OR</th>
<th>CI 95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke/death</td>
<td>25 (4%)</td>
<td>6 (1.3%)</td>
<td>0.31</td>
<td>0.126-0.762</td>
</tr>
<tr>
<td>Stroke</td>
<td>25 (4%)</td>
<td>6 (1.3%)</td>
<td>0.31</td>
<td>0.126-0.762</td>
</tr>
<tr>
<td>Death</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Disabling stroke</td>
<td>11 (1.8%)</td>
<td>1 (0.2%)</td>
<td>0.11</td>
<td>0.015-1.924</td>
</tr>
<tr>
<td>TIA</td>
<td>26 (4.2%)</td>
<td>13 (2.7%)</td>
<td>0.65</td>
<td>0.333-1.289</td>
</tr>
<tr>
<td>MI</td>
<td>2 (0.3%)</td>
<td>1 (0.2%)</td>
<td>0.66</td>
<td>0.060-7.343</td>
</tr>
<tr>
<td>MACE</td>
<td>29 (4.7%)</td>
<td>7 (1.5%)</td>
<td>0.31</td>
<td>0.135-0.715</td>
</tr>
<tr>
<td>Hematoma</td>
<td>6 (0.9%)</td>
<td>9 (1.9%)</td>
<td>2.01</td>
<td>0.712-5.696</td>
</tr>
<tr>
<td>Conversion to CEA</td>
<td>3 (0.5%)</td>
<td>1 (0.2%)</td>
<td>0.44</td>
<td>0.046-4.261</td>
</tr>
</tbody>
</table>

Clinical benefit of statin treatment before CAS

Statins and carotid artery disease

4. Some evidence (small prospective studies) that short-term (≤ 6 months) statin treatment in patients with carotid stenosis positively modifies carotid plaque morphology.

5. Good evidence (multiple RCTs) that very short-term high-dose statin treatment BEFORE PCI reduces peri-procedural MI.

6. Almost no evidence on high-dose statins pre-treatment before either CEA or CAS.
Pravastatin before CEA stabilizes carotid plaques

24 pts scheduled for CEA randomized to either:
• 40 mg/day of pravastatin (n=11)
• Placebo (n=13)

Time from randomization to surgery: 3 months

Crisby M. Circulation 2001;103:926-33
Pravastatin before CEA stabilizes carotid plaques

TABLE 3. Lipid Content in Carotid Lesions

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Oil Red O</th>
<th>P</th>
<th>ApoB</th>
<th>P</th>
<th>NA 59</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (n=13)</td>
<td></td>
<td></td>
<td>19.1±6.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pravastatin (n=11)</td>
<td><0.05</td>
<td>21.5±13.1</td>
<td><0.001</td>
<td></td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

NA59 is oxidized LDL. Values represent percentage positive-stained lesional area; data are mean±SD.

TABLE 4. T-Cell, Macrophage, SMC, and TUNEL Positivity in Carotid Lesions

<table>
<thead>
<tr>
<th>Subjects</th>
<th>CD3</th>
<th>P</th>
<th>CD68</th>
<th>P</th>
<th>HHF35</th>
<th>P</th>
<th>TUNEL</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (n=13)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pravastatin</td>
<td><0.05</td>
<td></td>
<td><0.05</td>
<td></td>
<td>16.9±3.5</td>
<td><0.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CD3 is T cells; CD68, macrophages; HHF35, SMCs; and TUNEL, apoptotic cells. Values represent percentage positive cells; data are mean±SD.

Crisby M. Circulation 2001;103:926-33
Intensive atorvastatin treatment modifies plaque morphology

- Prospective study on 113 patients with bilateral carotid stenosis:
 - 46 patients underwent CAS on the most severe stenosis
 - 67 patients with low-grade bilateral carotid stenosis did not undergo revascularisation
- All patients received atorvastatin (10-80 mg/day) to target LDL-C <100 mg/dL
- Follow-up with DUS of the low-grade carotid stenosis after 6 months

Kadoglu N. EJVES 2010;39:e258-65
Intensive atorvastatin treatment modifies plaque morphology

Kadoglu N. EJVES 2010;39:e258-65
Atorvastatin reduces carotid plaque inflammation before CEA

60 pts scheduled for CEA randomized to either:

- 10 mg/day of atorvastatin (n=20)
- 80 mg/day of atorvastatin (n=20)
- 8 g/day cholestyramine + 2.5 g/day sitosterol (n=20)

Time from randomization to surgery: 3 months

Puato M. Stroke 2010;41:1163-1168
Atorvastatin reduces carotid plaque inflammation before CEA

Puato M. Stroke 2010;41:1163-1168
Atorvastatin reduces carotid plaque inflammation before CEA

Puato M. Stroke 2010;41:1163-1168
Statins and carotid artery disease

4. Some evidence (small prospective studies) that short-term (≤ 3 months) statin treatment in patients with carotid stenosis positively modifies carotid plaque morphology.

5. Good evidence (multiple RCTs) that very short-term high-dose statin treatment BEFORE PCI reduces peri-procedural MI.

6. Almost no evidence on high-dose statins pre-treatment before either CEA or CAS.
High-dose statins before PCI

• Patient-level meta-analysis of 13 RCTs on high-dose statin pre-treatment before PCI:
 – high-dose statin (n=1692)
 – no statin/low-dose statin (n=1649)

• All patients receiving statin therapy after PCI

• End points:
 – periprocedural myocardial infarction
 – 30-day MACE (death, MI, TVR)

Patti G. Circulation 2011;123:1622-1632
High-dose statins before PCI

Log-rank $P < 0.00001$
High-dose statins before PCI

Odds ratio for periprocedural myocardial infarction

<table>
<thead>
<tr>
<th>Category</th>
<th>OR</th>
<th>95% CI</th>
<th>P</th>
<th>Interaction P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥65 y</td>
<td>0.39</td>
<td>(0.27-0.56)</td>
<td>0.0001</td>
<td>0.01</td>
</tr>
<tr>
<td>Age <65 y</td>
<td>0.76</td>
<td>(0.53-1.08)</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>0.56</td>
<td>(0.42-0.75)</td>
<td>0.0001</td>
<td>0.64</td>
</tr>
<tr>
<td>Women</td>
<td>0.49</td>
<td>(0.30-0.80)</td>
<td>0.005</td>
<td></td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>0.53</td>
<td>(0.34-0.82)</td>
<td>0.004</td>
<td>0.91</td>
</tr>
<tr>
<td>No diabetes mellitus</td>
<td>0.54</td>
<td>(0.40-0.74)</td>
<td>0.0001</td>
<td></td>
</tr>
<tr>
<td>ACS</td>
<td>0.64</td>
<td>(0.40-1.02)</td>
<td>0.06</td>
<td>0.43</td>
</tr>
<tr>
<td>Stable angina</td>
<td>0.52</td>
<td>(0.41-0.66)</td>
<td>0.00001</td>
<td></td>
</tr>
<tr>
<td>Multivessel PCI</td>
<td>0.52</td>
<td>(0.25-1.06)</td>
<td>0.07</td>
<td>0.94</td>
</tr>
<tr>
<td>Single vessel PCI</td>
<td>0.53</td>
<td>(0.40-0.71)</td>
<td>0.00001</td>
<td></td>
</tr>
<tr>
<td>IIb/IIIa inhibitors</td>
<td>0.71</td>
<td>(0.45-1.12)</td>
<td>0.16</td>
<td>0.18</td>
</tr>
<tr>
<td>No IIb/IIIa inhibitors</td>
<td>0.49</td>
<td>(0.36-0.66)</td>
<td>0.00001</td>
<td></td>
</tr>
</tbody>
</table>

Patti G. Circulation 2011;123:1622-1632
High-dose statins before PCI

31% RRR
$P = 0.021$

68% RRR
$P < 0.001$

Periprocedural myocardial infarction (%)

<table>
<thead>
<tr>
<th></th>
<th>High-dose statin</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal CRP</td>
<td>7.8</td>
<td>10.9</td>
</tr>
<tr>
<td>High CRP</td>
<td>4.3</td>
<td>12.3</td>
</tr>
</tbody>
</table>

N=946 N=915

N=369 N=365

Patti G. Circulation 2011;123:1622-1632
High-dose statins before PCI

- The mechanisms of early protection from statins are unclear, but not due to LDL-C lowering effects (median pretreatment 0.5 days)
- Early lipid-independent effects of statins:
 - antithrombotic action
 - vasodilation of coronary microvessels
 - rapid (<12 hours) improvement of endothelial function
- Patients with high inflammatory status derived most benefits from high-dose statin pretreatment

Patti G. Circulation 2011;123:1622-1632
• Why should all these consideration not apply to carotid artery revascularization, particularly in symptomatic patients?
Statins and carotid artery disease

4. Some evidence (small prospective studies) that short-term (≤ 3 months) statin treatment in patients with carotid stenosis positively modifies carotid plaque morphology.

5. Good evidence (multiple RCTs) that very short-term high-dose statin treatment BEFORE PCI reduces peri-procedural MI.

6. Almost no evidence on high-dose statins pre-treatment before either CEA or CAS.
Embolization during CAS

- 188 consecutive patients undergoing CAS were prospectively enrolled
- After CAS, the filter was examined to assess the amount of distal embolization
- Embolization was classified by visual inspection:
 - "SCARCE EMBOLIZATION" (no debris or hardly visible debris) N=148
 - "RELEVANT EMBOLIZATION" (visible embolic debris) N=40
Embolization rate according to baseline LDL-C and CRP levels

- LDL>120: P<0.0001
- LDL<120: P<0.0001
- CRP>4
- CRP<4

De Carlo M. ESC congress 2011
<table>
<thead>
<tr>
<th>Procedure & Outcome</th>
<th>Scarce Embolization</th>
<th>Relevant Embolization</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procedural success</td>
<td>148 (100%)</td>
<td>40 (100%)</td>
<td>0.99</td>
</tr>
<tr>
<td>Distal filter</td>
<td>124 (84.4%)</td>
<td>36 (90.0%)</td>
<td>0.45</td>
</tr>
<tr>
<td>Open-cell-design stent</td>
<td>77 (52.0%)</td>
<td>22 (55.0%)</td>
<td>0.74</td>
</tr>
<tr>
<td>30-day death</td>
<td>0 (0%)</td>
<td>2 (5.0%)</td>
<td>0.04</td>
</tr>
<tr>
<td>30-day stroke</td>
<td>0 (0%)</td>
<td>4 (10.0%)</td>
<td>0.002</td>
</tr>
<tr>
<td>30-day TIA</td>
<td>0 (0%)</td>
<td>8 (20.0%)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

De Carlo M. ESC congress 2011
RCT of high-dose rosuvastatin before CAS to reduce embolization

Candidate to elective CAS

LDL>120 mg/dL
and/or CRP>4 mg/dL

Randomize 1:1

Rosuvastatin 40mg for 6 w

CAS with embolic protection

Assessment of embolic debris

1- and 6-month follow-up

LDL≤120 mg/dL
and CRP≤4 mg/dL

Exclude from trial

Placebo
Conclusions

1. Current **Guidelines** recommend intensive statin **treatment** (LDL<70 mg/dL) for all patients with carotid artery stenosis (independent of the indication to revascularization)

2. A few small-sized studies demonstrated that **short-term (≤6 months)** statin treatment is able to induce a more stable **carotid plaque phenotype**

3. This might reduce the propensity of **carotid plaque to fragmentation** during manipulation (CEA) or stenting (CAS)
Conclusions

4. **Properly designed prospective studies are warranted** to verify whether pre-treatment with high-dose statins can improve the operative results of CEA and CAS.

5. However, such studies are maybe outdated before they begin, since I currently see **no reason not to treat all carotid stenosis patients with high-dose statins from the very moment of diagnosis**.