TRV120027, a Novel β-Arrestin Biased Ligand at the Angiotensin II Type I Receptor, Unloads the Heart and Maintains Renal Function When Added to Furosemide in Experimental Heart Failure

Guido Boerrigter, David G. Soergel, Jonathan D. Violin, Michael W. Lark, and John C. Burnett, Jr.

ESC Meeting, Paris, France
August 31, 2011
Disclosures

• G Boerrigter and JC Burnett Jr received research support from Trevena, Inc.
• DG Soergel, JD Violin, and MW Lark are employees of Trevena, Inc.
Background

• Acute decompensated heart failure (HF) is associated with high mortality and morbidity, including frequent rehospitalization.

• Despite advances in the treatment of chronic HF, the treatment of acute decompensated HF remains largely empirical.

• Loop diuretics are frequently used in HF but they can result in diuretic resistance and worsening renal function, which are associated with adverse outcomes.¹,²

• Novel innovative therapies are urgently needed.

¹Felker GM et al, NEJM 2011;364:797-805
²Forman DE et al, JACC 2004;43:61-7
Angiotensin II

AT1R

Vasoconstriction
Glomerular filtration ↓
Na⁺ reabsorption ↑
Angiotensin II

- Vasoconstriction
- Glomerular filtration ↓
- Na⁺ reabsorption ↑

- Balanced vasodilation
- Cardiac performance ↑
- Renal perfusion ↑
AT1 receptor blocker

Vasoconstriction
Glomerular filtration ↓
Na+ reabsorption ↑

Balanced vasodilation
Cardiac performance ↑
Renal perfusion ↑
TRV120027

AT1R

β-arr

Vasoconstriction
Glomerular filtration ↓
Na+ reabsorption ↑

Balanced vasodilation
Cardiac performance ↑
Renal perfusion ↑
TRV120027

• A β-arrestin biased ligand at the AT1R

• Vasodilation and increased cardiac performance in rats \(^1\)

• In canines with experimental HF \(^2\):
 • Vasodilation, reduction in MAP
 • Increased cardiac output
 • Maintained sodium excretion and GFR
 • Blood pressure reductions were rapidly reversible

\(^1\)Violin JD et al, J Pharm Exp Ther 2010:335:572-9
\(^2\)Boerrigter G et al, Circ HF 2011, Epub 8/2011
Hypothesis

We hypothesized that in experimental HF TRV120027 with its unique pharmacology would have beneficial cardiac unloading actions when added to furosemide while preserving renal function.
Methods

• We assessed the acute cardiorenal and humoral actions of TRV120027 and furosemide in a canine model of HF

• HF was induced by tachypacing (240 beats/min for 10 days), resulting in a HF phenotype with decreased cardiac output, vasoconstriction, sodium retention, and neurohumoral activation

• An acute study under general anesthesia was done on day 11 of pacing

• Surgical preparation included a Swan-Ganz catheter, a catheter in the left ureter, and an electromagnetic flow probe on the left renal artery to measure renal blood flow
Acute Protocol

Inulin bolus

Base-line

Equilibration

C1

60’ 30’

Inulin 1 mL/min

Saline 0.5 mL/min

Saline 0.5 mL/min
Acute Protocol

Inulin bolus

Base-line

Equilibration

C1

C2

C3

60'

30'

15'

30'

15'

30'

Inulin 1 mL/min

Saline 0.5 mL/min

Saline 0.5 mL/min

Furosemide 1 mg/kg/h

0.3

1.5

µg/kg/min

TRV120027
Acute Protocol

Inulin bolus

Equilibration

Baseline

C1

C2

C3

Washout

C4

Post infusion

60' 30' 15' 30' 15' 30' 30' 30'

Inulin 1 mL/min

Saline 0.5 mL/min

Furosemide 1 mg/kg/h

Saline

0.3 µg/kg/min

TRV120027

Saline
Acute Protocol

Inulin bolus

Equilibration

Baseline

C1

60'

30'

C2

15'

30'

15'

C3

30'

Washout

C4

30'

30'

Post infusion

Inulin 1 mL/min

Saline 0.5 mL/min

Furosemide 1 mg/kg/h

Saline

Saline

Saline

Saline
Methods

• Neurohormones were measured by radioimmunoassay, glomerular filtration rate by inulin clearance

• **Within-group changes** were analyzed with 1-way analysis of variance for repeated measurements with post-hoc Dunnett’s test (or Friedman’s test for not normally distributed data)

• Differences **between groups** were analyzed by comparing the changes from baseline with unpaired t-test (or Mann-Whitney U-test for not normally distributed data)

• Statistical significance was accepted at $p<0.05$
Results
TRV120027 reduces cardiac afterload

- **Δ MAP (mmHg)**
 - C1:ypsy
 - C2: 0
 - C3: -10
 - C4: -20

- **Δ CO (L/min)**
 - C1: 0.2
 - C2: 0.1
 - C3: 0
 - C4: -0.1

* p<0.05 vs. respective baseline
p<0.05 between groups
TRV120027 reduces cardiac preload

\[\Delta \text{RAP (mmHg)} \]

\[\Delta \text{PCWP (mmHg)} \]

<table>
<thead>
<tr>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
</tr>
</tbody>
</table>

\[\Delta \text{RAP (mmHg)} \]

<table>
<thead>
<tr>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-2</td>
<td>-4</td>
<td>-6</td>
</tr>
</tbody>
</table>

* \(p < 0.05 \) vs. respective baseline
\(p < 0.05 \) between groups

Furosemide + saline
Furosemide + TRV120027
TRV120027 reduces systemic and pulmonary vascular resistances

Δ SVR (mmHg·L⁻¹·min)

Δ PVR (mmHg·L⁻¹·min)

Furosemide + saline
Furosemide + TRV120027

* p<0.05 vs. respective baseline
p<0.05 between groups
Renal blood flow and glomerular filtration rate are preserved with TRV120027.

- Furosemide + saline
- Furosemide + TRV120027

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>C2</th>
<th>C3</th>
<th>C4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δ RBF (ml/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ GFR (mL/min)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* p<0.05 vs. respective baseline
p<0.05 between groups
Renal excretory function is preserved during and enhanced after TRV120027 infusion.

Δ UVolR (mL/min)

- C1
- C2
- C3
- C4

Δ UNaV (mL/min)

- C1
- C2
- C3
- C4

* p<0.05 vs. respective baseline
p<0.05 between groups

- **Furosemide + saline**
- **Furosemide + TRV120027**
Reduced distal fractional Na\(^+\) reabsorption in post-infusion may be related to aldosterone suppression.
TRV120027 reduces ANP, consistent with greater cardiac unloading.

![Graph showing the change in ANP (Δ ANP) levels over time with different treatments.]

- Furosemide + saline
- Furosemide + TRV120027

* p<0.05 vs. respective baseline
p<0.05 between groups
Summary

Addition of TRV120027 to furosemide resulted in

• potent cardiac unloading actions with reduction in systemic and pulmonary vascular resistances
• maintained renal blood flow and GFR
• maintained urine flow and urinary sodium excretion during drug infusion but augmented sodium excretion and diuresis in the post-infusion clearance
• trend for reduced aldosterone, consistent with reduced DFRNa in the post-infusion clearance
• significant reduction in plasma ANP consistent with cardiac unloading
Conclusions

• When added to furosemide, TRV120027 demonstrated potent cardiac unloading actions while preserving renal function

• Thus, the previously reported cardiorenal actions of TRV120027 are preserved when given with furosemide\(^1\)

• Further studies are required to assess whether the apparent enhanced renal action in the post-infusion clearance is due to a renal protective or enhancing action of TRV120027 and whether this could translate into better renal outcomes in HF patients

• The unique vascular, cardiac, and renal pharmacology of TRV120027 supports further studies in human HF

\(^1\) Boerrigter G et al, Circ HF 2011, Epub 8/2011