Diagnostic accuracy of transthoracic contrast echocardiography as a screening method for pulmonary arteriovenous malformations

MWF van Gent¹, MC Post¹, RJ Snijder², JJ Westermann², JJ Mager²
Department of cardiology¹ and pulmonology², St Antonius Hospital, Nieuwegein, The Netherlands

Background

- **Pulmonary arteriovenous malformations (PAVMs)**
 - are abnormal communications between pulmonary arteries and pulmonary veins
 - may cause paradoxical embolism and right-to-left shunting
 - are associated with severe neurological complications (e.g. brain abscess, stroke)
 - efficient endovascular treatment (embolotherapy) is possible and is performed in all PAVMs that are large enough
 - >80% is associated with HHT

- **Hereditary Hemorrhagic Telangiectasia (HHT) (Rendu-Osler-Weber disease)**
 - is an autosomal dominant disorder
 - is characterized by vascular abnormalities varying from small telangiectases to large arteriovenous malformations (predominantly in the lungs, brain and liver)

- **Screening for PAVMs**
 - contrast echocardiography and chest CT
 - disadvantage of chest CT is radiation exposure
 - TTCE recently first choice in guidelines¹

- **Contrast echocardiography (TTCE)**
 - is a simple, minimally invasive technique
 - very sensitive for the detection of pulmonary shunting²
 - grading scale 1-3 depending on magnitude of microbubbles in left ventricle (still-frame)³

Aim of the study

- To determine the diagnostic value of pulmonary shunting on TTCE as compared with PAVMs on chest HRCT, in the largest HHT patient cohort reported so far

Methods

Study population
In the period from May 2004 till December 2010, 626 consecutive persons were screened for possible HHT with both TTCE and chest HRCT

Contrast echocardiography
10 ml Agitated saline was injected while projecting the AP4CH view without a Valsalva manoeuvre. TTCE was considered positive for a pulmonary RLS if microbubbles appeared in the left atrium after four cardiac cycles. Shunt size was determined (grade 1-3).

Chest HRCT
PAVM: a nodular opacity with both an afferent and efferent vessel.

Results

<table>
<thead>
<tr>
<th>Shunt on TTCE −</th>
<th>Shunt on TTCE +</th>
<th>Origin of shunt uncertain</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAVM on CT −</td>
<td>357</td>
<td>126</td>
<td>3</td>
</tr>
<tr>
<td>PAVM on CT +</td>
<td>2</td>
<td>118</td>
<td>2</td>
</tr>
<tr>
<td>PAVM on CT uncertain</td>
<td>10</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>369</td>
<td>252</td>
<td>5</td>
</tr>
</tbody>
</table>

Table 1. TTCE versus PAVM on chest CT

- The negative predictive value of TTCE for the absence of PAVMs on chest HRCT was 99.4%, and sensitivity was 98.3%.

- In two patients with PAVMs on chest HRCT but no shunt on TTCE, PAVMs were very small and far beyond possibility for treatment.

- The positive predictive value of TTCE for the presence of PAVMs was 48.4%, and specificity 73.9%.

Conclusions

- TTCE has an excellent negative predictive value for PAVMs

- Poor positive predictive value of TTCE relates to detection of small pulmonary shunts (not visible on chest HRCT)

- TTCE did not miss PAVMs amenable for embolisation

- TTCE appears suitable as a first-line screening method for PAVMs

- Important reduction in radiation and costs

- Importance of local experience

Literature cited

Embodisation of PAVM with Amplatzer® vascular plug

Shunt

Large PAVM in an HHT patient

Pulmonary angiography showing two PAVMs