Aortic Valve Stenosis

Postoperative Evaluation and Outcome Following Aortic Valve Replacement

Raphael Rosenhek

Department of Cardiology
Medical University of Vienna

Euroecho 2011
Budapest, December 9th 2011
High Transprosthetic Gradient
Case presentation

- Female, 78 yrs
- Aortic valve replacement (19mm Carbomedics bileaflet valve)
- COPD, Hypertension
- Routine visit 14 years after surgery
- NYHA functional class II, no angina
- Physical exam: 149cm, 56 kg, BSA 1.5 cm²/m²
 BP 150/70 mmHg
 Systolic murmur, normal clicks
- Laboratory: Hct 32%, Hb 11.2 mg/dl
High Transprosthetic Gradient
Case presentation: Echocardiography
High Transprosthetic Gradient

Case presentation: Echocardiography

CW-Doppler: aortic valve

Doppler: aortic regurgitation
High Transprosthetic Gradient

Case presentation: Echocardiography

- Normal LV size and function, LVH, diast. dysf.
- Prosthetic aortic valve:
 - peak gradient 77 mmHg
 - mean gradient 45 mmHg
 - moderate aortic regurgitation (paravalvular)
 (color, PHT 380m, desc. ao retrogr. flow +/-)
- Mild mitral regurgitation
- Syst. PAP 38 mmHg
High Transprosthetic Gradient

Interpretation of echo data?

1. High echo gradient in a normally functioning mechanical valve
2. Prosthetic valve stenosis
High Transprosthetic Gradient

High transprosth gradient: Systematic workup

- Look at baseline echo data:
 Was there a progression of the gradient?
 (information not available)

- Search for normal values in the literature:
 Find out about normal Doppler values according to valve type and size

- Fluoroscopy:
 Exclude thrombotic obstruction

- TEE:
 Suspicion for thrombus or pannus
Normal Doppler Values

Carbomedics Bileaflet Aortic Valves

<table>
<thead>
<tr>
<th>Size</th>
<th>N</th>
<th>Peak Velocity (m/s)</th>
<th>Peak Gradient (mmHg)</th>
<th>Mean Gradient (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 mm</td>
<td>63</td>
<td>3.1 ± 0.4</td>
<td>33 ± 11</td>
<td>17 ± 5</td>
</tr>
<tr>
<td>21 mm</td>
<td>111</td>
<td>2.6 ± 0.5</td>
<td>26 ± 10</td>
<td>13 ± 5</td>
</tr>
<tr>
<td>23 mm</td>
<td>120</td>
<td>2.4 ± 0.4</td>
<td>25 ± 7</td>
<td>11 ± 4</td>
</tr>
<tr>
<td>25 mm</td>
<td>103</td>
<td>2.3 ± 0.3</td>
<td>20 ± 9</td>
<td>9 ± 5</td>
</tr>
<tr>
<td>27 mm</td>
<td>57</td>
<td>2.2 ± 0.6</td>
<td>19 ± 7</td>
<td>8 ± 3</td>
</tr>
</tbody>
</table>

19 mm ± 2 SD: 1.6 to 3.9, 11 to 55, 7 to 27

Normal Values for Doppler Echocardiographic Assessment of Heart Valve Prosthesis.

High Transprosthetic Gradient
Differential Diagnosis

- Prosthetic valve stenosis
 - valve thrombosis
 - pannus
- High flow rate
 - aortic regurgitation
 - high cardiac output
 - anemia
- Localized gradients / Pressure recovery
- Patient Prosthesis Mismatch
High Transprosthetic Gradient
Fluoroscopy
High Transprosthetic Gradient

Catheterization (not at our request - previously performed)

mean Gradient:
Catheter: 26 mmHg
Doppler: 45 mmHg
High Transprosthetic Gradient
Localized Gradient and Pressure Recovery
“Patient Prosthesis Mismatch is defined as an effective orifice area of the implanted prosthesis that is smaller than that of a normal human valve.”

Rahimtoola, Circulation. 1978;58:20-24
Patient Prosthesis Mismatch

When is a prosthesis too small?

- **Patient Prosthesis Mismatch**
 - $\text{iEOA} < 0.80$ to 0.85 cm2/m2

- **Severe Mismatch**
 - $\text{iEOA} < 0.6$ cm2/m2

Pibarot et al., J Am Coll Cardiol. 2000;36: 1131-1141
Elevated gradient due to a combination of:

1. High flow rate
 - moderate aortic regurgitation
 - anemia

2. Small valve size: Patient Prosthesis Mismatch

3. Localized gradients

4. Pressure recovery
High Transprosthetic Gradient

Management

The patient was managed conservatively

- 78 years old patient with good quality of life
- Stable NYHA II (presence of COPD)
- Only mild hemolytic anemia
- High operative risk
- Possibility of implantation of a larger valve improbable
Prosthetic Aortic Valve Evaluation
Valve Regurgitation
Prosthetic Aortic Valve Evaluation
Sutureless Valve Dislocation
Prosthetic Aortic Valve Evaluation

Sutureless Valve - Leaflet Flutter
AVR Postoperative Evaluation

Summary

- Assessment of Ventricular Function
- Assess Valve Function
- Record Baseline Hemodynamic Parameters
- Assess Valve Regurgitation Valvular/Paravalvular
- Diagnosis of Endocarditis and Associated Complications
- Differential Diagnosis of High Transprosthetic Gradients
 - Valve Obstruction / Degeneration
 - Patient-Prosthesis Mismatch
 - High Flow State
 - Pressure Recovery
- Complementarity of TTE and TEE
Aortic Valve Replacement

Survival

Hammermeister K et al. J Am Coll Cardiol 2000;36:1152-1158
Aortic Valve Replacement

Complications - Reoperations

Complications*

- bleeding, endocarditis, systemic embolism, nonthrombotic valve obstruction, valvular regurgitation or valve thrombosis

Reoperations

* bleeding, endocarditis, systemic embolism, nonthrombotic valve obstruction, valvular regurgitation or valve thrombosis

Hammermeister K et al. J Am Coll Cardiol 2000;36:1152-1158
Aortic Valve Replacement
Survival in Elderly Patients

Likosky D S et al. Circulation 2009;120:S127-S133
Partner Trial: High-Risk Patients

Mortality: TAVI vs Aortic Valve Surgery

Hazard ratio, 0.93 (95% CI, 0.71–1.22)
P = 0.62

SOURCE Registry (TAVI)
Cause of Late Deaths (30 days to 1 year) n=179/1038
Life Expectancy in Years

Europe and US

<table>
<thead>
<tr>
<th>Age</th>
<th>EU</th>
<th></th>
<th></th>
<th>EU</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Overall</td>
<td>Men</td>
<td>Women</td>
<td>Overall</td>
<td>Men</td>
<td>Women</td>
</tr>
<tr>
<td>65</td>
<td>18.9</td>
<td>17.0</td>
<td>20.5</td>
<td>18.5</td>
<td>17.0</td>
<td>19.7</td>
</tr>
<tr>
<td>70</td>
<td>15.2</td>
<td>13.5</td>
<td>16.5</td>
<td>14.9</td>
<td>13.6</td>
<td>15.9</td>
</tr>
<tr>
<td>75</td>
<td>11.8</td>
<td>10.5</td>
<td>12.7</td>
<td>11.6</td>
<td>10.5</td>
<td>12.3</td>
</tr>
<tr>
<td>80</td>
<td>8.8</td>
<td>7.9</td>
<td>9.4</td>
<td>8.7</td>
<td>7.8</td>
<td>9.3</td>
</tr>
<tr>
<td>85</td>
<td>6.5</td>
<td>5.9</td>
<td>6.8</td>
<td>6.4</td>
<td>5.7</td>
<td>6.8</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td>4.6</td>
<td>4.1</td>
<td>4.8</td>
</tr>
<tr>
<td>95</td>
<td></td>
<td></td>
<td></td>
<td>3.2</td>
<td>2.9</td>
<td>3.3</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td>2.3</td>
<td>2.0</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Eurostat. European Commission. Life Expectancy by Sex and Age. Queries for Survival performed for the year 2007 for the European Union (27 countries)

Rosenhek, R. et al., Eur Heart J 2011

ESC Working Group on Valvular Heart Disease Position Paper. Assessing the Risk of Interventions in Patients with Valvular Heart Disease
Risk Assessment
The High-Risk Patient

- Patient Preferences
- Natural Disease History
- Risk of Intervention
 - Long-term postprocedural outcome
 - Risk Scores?
- Individualized Risk Assessment
- Life Expectancy
- Team Approach

Timing and Choice of Procedure

Rosenhek, R. et al., Eur Heart J 2011
ESC Working Group on Valvular Heart Disease Position Paper.
Assessing the Risk of Interventions in Patients with Valvular Heart Disease