Imaging in “Fontan” staged palliation

Euro Echo 2011 - CHD teaching course
Owen I Miller
Lesions?

• Staged palliation for any single ventricle lesion
 • “Fontan” for Hypoplasia of Right Heart structures
 • “Norwood” for Hypoplasia of Left Heart structures

• Left Heart
 • Mitral atresia, aortic atresia, HLHS, critical AS, Ao arch hypoplasia

• Right Heart
 • Tricuspid atresia, PA/IVS

• Unbalanced AVSD etc.
Surgical staged palliation

- **Left Heart Hypoplasia**
 1. Achieve reliable systemic blood flow
 2. D-K-S / NW 1

- **Right Heart Hypoplasia**
 1. Achieve reliable pulmonary blood flow
 2. Systemic to Pulmonary shunt if insufficient
 3. PA band if too much
Single ventricle staged palliation

- "Stage 2"
 - Superior Cavo-Pulmonary anastomosis
 - Increase pulmonary blood flow
 - Unload systemic ventricle

- "Stage 3"
 - Total Cavo-Pulmonary Connection
 - Achieve normal oxygen saturation
 - Unload systemic ventricle
Imaging for single ventricle palliation

- Diagnosis

- Surgical planning
 - Pre/post stage 1
 - Pre/post stage 2
 - Pre/post stage 3

- Ongoing surveillance

- Management of complications
Modalities

- Plain X-ray

- Echocardiography
 - Morphology
 - Functional analysis

- Angiography and hemodynamics

- MRI
 - Standard MRI
 - Hybrid MRI/Catheter ("XMR")
Inadequate left heart “HLHS”

- Diagnostic questions:
 - Antenatal diagnosis
 - Postnatal Morphology
 - Connections
 - Pulmonary veins
 - Interatrial communication
 - HLHS vs. Borderline LV / AoV / Arch
 - Tricuspid Valve function
 - Systemic RV function
Norwood 1 operation for HLHS
“HLHS” diagnosis & pre stage 1 planning

- Plain X-ray
 - Lung volume
 - Associated contraindications, skeletal abn.

- Angiography
 - no role in initial assessment

- Cardiac MRI
 - Rarely needed for diagnosis and pre stage 1 planning
Echocardiography in pre stage 1 planning

- Morphology
- Interatrial septum
- Ventricular function
Pre-stage 1 echo assessment - TR
Borderline LV?
Borderline LV – Norwood or Hybrid?

- Modified aortic discriminant score for critical aortic stenosis (*Colon et al JACC 2006*)
 - Cut-off for Bivent. Repair (-0.46)

- Evelina Children’s Hospital Hybrids with Borderline LV
 - $N = 7$: Discriminant score: (-3.26) ~ (-1.22)
 - 3/7 survivors achieved 2 ventricle circulation
 #1 MVR @ 1 yr and Ross @ 14 months
 #2 MV repair and EFE resection @ 2 months, Ross-Konno @ 7 months
 #3 No further procedures but died @ 3 yrs after hybrid with PHT

Ballard G et Eur J Echocardiogr 2010
Hybrid procedure

- PDA Stent
- PA Bands
- BAS
Aortic discriminant score

Discriminant score

biventricular
univentricular

age (days)

Ballard G et Eur J Echocardiogr 2010
What about MRI LV volume?

Male neonate who underwent an initial coarctation repair but had a significant atrial septal defect. MRI showed a small left ventricle but very volume loaded right heart. In conjunction with his clinical condition and echocardiography, it was felt he was suitable for a biventricular repair and he underwent ASD closure and further repair of his aortic arch and is currently doing well.

Male neonate with critical aortic stenosis who underwent a balloon valvuloplasty and then a hybrid procedure. Although MRI showed a reasonably sized left ventricle, there was significant mitral regurgitation and very little forward flow through the aorta. In conjunction with his clinical condition and echocardiography, he underwent a Norwood Stage I.
Hypoplasia of Right Heart
Tricuspid Atresia
Pre stage 1 planning summary

- Predominantly echocardiographic
 - Morphology & connections
 - 2D measurements
 - Inlets
 - Outlets
 - Function
 - Regurgitation
 - MRI not routine pre stage 1
 - Angiography no longer necessary
Pre stage 2 planning

- HLHS
 S/P Norwood 1 or S/P Hybrid

 Or

- HRHS (TAT; PA/IVS)
 S/P Shunt or S/P PA Band

- Ventricular function
- Interatrial septum
- Pulmonary arteries
- SVC morphology
- Volume loading
- Outlet stenosis/regurgitation
- Shunt

- Tricuspid valve function
- Aortic arch
Function as a prognostic factor

• Initial poor RV function increases risk of late mortality
 (Altmann et al, Am J Cardiol, 2000; 86:964-8)

• Interstage mortality associated with worse function
 (Nilsson et al, Acta Paediatrica, 2006 vol. 95 (12) :1594-600)

• Absence of RV dysfunction predictive of survival to stage II
 (Walsh et al, Heart, 2009 vol. 95 (15) pp. 1238-44)
Single ventricle RV function
Subjective assessment of RV function

- Beginners
- Junior Trainees
- Echocardiographers
- Senior Trainees
- Consultants

Chart showing the percentage of concordant, 1 grade out, and 2 grades out assessments across different groups.
Tricuspid Annular Plane Systolic Excursion “TAPSE”
Speckle tracking in HLHS: Tricuspid annular descent (TMAD)

- Tricuspid/mitral annular descent
- Apical view
- Three points placed:
 - TV annulus: free wall and septum
 - Apex
- Calculates displacement of the TV plane
4 Chord Strain/Shortening

- Apical ‘4 chamber’
- Place four points:
 - TV annulus free wall
 - TV annulus septum
 - Midway down free wall
 - Midway down septal wall
- Calculates strain/shortening of each chord

Courtesy: J M Simpson / H Bellsham-Revell
Tissue Doppler & Time intervals in HLHS

RV

- Systolic and diastolic time intervals vary according to stage
- Isovolumic times appear increased
- ? Failure ? adaptation

Figure 5

Bellsham-Revell et al 2011 in press
MRI assessment pre stage 2

• Now in routine practice
 • Has replaced catheter angiography

• Day stay admission
 • General Anaesthesia
 • Clinical assessment and echocardiography under same GA

• Sequences
 • Cine (SSFP)
 • Black Bloods
 • Gadolinium enhanced MRA
 • 3D SSFP
cMRI – short axis stack for RV volume
Single ventricular function and arch
MRI evaluation of BT shunt
MRI – flow quantitation
MRI pre stage 2
MRI – pre HemiFontan / Glenn
Angiography pre stage 2

- Largely unnecessary
 - May be needed for shunt stenosis
 - Particularly if catheter intervention planned at same procedure

- Distal Pulmonary arteries?
 - Already seen well on MRI
 - Does not provide flow data (like MRI)
Pre stage 2 planning summary

• Predominantly cross-sectional
 • In our institution cMRI
 • Previous repair
 • Arch
 • Shunt
 • Ventricular function
 • Regurgitation
 • Pulmonary arteries

• Echocardiography still important but difficult for RV
 • Newer techniques may prove useful
Pre stage 3 (TCPC) surgical planning: centre dependent

<table>
<thead>
<tr>
<th></th>
<th>Angiography</th>
<th>Echocardiography</th>
<th>MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulmonary arteries</td>
<td>+/-</td>
<td>+/-</td>
<td>✓</td>
</tr>
<tr>
<td>Aortic arch</td>
<td>✗</td>
<td>+/-</td>
<td>✓</td>
</tr>
<tr>
<td>Ventricular function</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Tricuspid Valve</td>
<td>✗</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Pulmonary veins</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Pre TCPC

- Ventricular Function
- Unobstructed Pulmonary Venous Return
- Superior cavo-pulmonary anastomosis
- Regurgitation
- Pulmonary arteries

- CVP (+/- PVRI)
FR 16Hz
11cm
2D
57%
C 47
P Low
HGen
CF
64%
2.5MHz
WF High
Med

16/06/2011 14:45:42
TIS1.5 MT 1.0
S5-1/ECH

84 bpm
MRI evaluation pre TCPC

+ CVP

Glenn

Neo-Ao

RPA

LPA
MRI pre TCPC – Volume unloading after Glenn
MRI plus Catheter for “High risk” TCPC

- If raised PVR suspected
 - then both morphology (MRI)
 - function (MRI)
 - cardiac output (MRI)
 - and invasive hemodynamics are required (Catheter)
 - May be combined with O_2 / iNO to complete PVRI study
XMR: combined X-ray cardiac catheterisation + Magnetic Resonance Imaging
Pre stage 3 planning summary

- Predominantly MRI + CVP
- May need formal PVRI study

For regurgitant valves:
- then 2D/3D TTE & TOE for planning valve repair
Long term follow-up after TCPC

- Patency of lateral tunnel / extra cardiac conduit
 - SEC
 - Thrombus
 - Fenestration assessment
 - Device closure

- Systemic ventricular function
 - Systemic AV valve assessment

- Veno-Venous Collaterals
Veno-venous collaterals

- Echo
 - Indirect evidence with bubble study
 - Inject onto systemic upper limb vein, image PVV return
- Angiography
 - If planning intervention
- MRI
 - Contrast enhance MRA
 - Limited by preset sequences and/or need for multiple contrast runs
- MRI-4D flow?
Angiography for V-V collaterals
MRI for V-V collateral

V-V collateral to PV
Contrast enhanced MRA vs. 4D Flow
4D flow quantification

Courtesy: I Valverde
Contrast-enhanced MRI

4D-flow MRI
Summary

• Single ventricle hearts
 • Pre stage 1
 • Comprehensive echo assessment of morphology and suitability
 • Advanced echo techniques may prove useful
 • Pre stage 2
 • Echo & MRI assessment mandatory
 • Pulmonary arteries pre Glenn / Hemi Fontan
 • Aortic arch / systemic outlet
 • Volumetry & Flows
 • Regurgitant fractions
 • Pre stage 3
 • Echo – ventricular function
 • MRI + CVP (+/- PVRI study), morphology and resistances
Summary II

- Long term surveillance of TCPC
 - Non invasive
 - Echo:
 - Function
 - AV valve regurgitation
 - Fenestration
 - MRI:
 - Function
 - AV valve regurgitation
 - Collaterals? Role of 4D flow
 - Hybrid – XMR / PVRI studies for the “failing Fontan”
Acknowledgements

- John Simpson
- Aaron Bell
- Hannah Bellsham-Revell
- Kuberan Pushparajah
- Kelly Nugent
- Karolina Bilska
- Isra Valverde
3D TOE for device closure of fenestration
Device occlusion of TCPC fenestration