Catheter mapping and ablation of unstable VTAs with percutaneous mechanical support systems

P. Neuzil, P. Ostadal, J. Petru, J. Skoda, L. Sediva, A. Kruger, S. Horakova,

Heart Center, Na Homolce Hospital

Prague
Disclosures

Research grant:

• Cardiac Assist Inc.
• Abiomed Inc.
• Pulse Cath AB
• Biosense Webster Inc.
Outline

• What is unstable VT?

• Do we need hemodynamic support devices?
 – Preclinical data
 – Case Example
 – Clinical Outcome
Why even consider hemodynamic support to convert unstable \rightarrow stable VT?

- Clinically, we get away with induction/termination and targeted entrainment mapping:
 - Define the scar
 - Identify putative exit site: pace-mapping (QRS morphology & latency)
 - Induce and do a “quick” entrainment \rightarrow terminate
 - Re-induce \rightarrow Delivery RF energy to terminate (in < 10 secs)

- So what is the problem?
 - Repetitive induction can be frustrating (difficult, multiple morphologies)
 - Don’t know how long to stay in VT (ie, what is “unstable”)
“Hemodynamically-Unstable” VT

- Lacks a reliable/validated monitoring modality:
 - **Blood Pressure??**
 - Systolic or Diastolic or Mean pressure?
 - What is an acceptable level? <60…50…40??
 - **Pulmonary artery catheterization?**
 - No information on end-organ perfusion
 - **Arterial lactate levels?**
 - Not dynamic enough
 - **Urinary Output?**
 - Not dynamic enough
 - **Pulse oximetry?**
 - Delayed response

Cerebral Oximetry:
The next step in VT hemodynamic monitoring?

• Cerebral perfusion is important indicator of systemic perfusion. In fact, the most sensitive indicator of end-organ perfusion is the brain, because it is exquisitely sensitive to hypoxia.¹

• Cardiac and neurosurgery studies utilizing cerebral oximetry monitoring demonstrate an association between cerebral desaturation events and adverse outcomes.
 – CABG trial (randomized): No adverse events in patients whose absolute value always remained >50%.²
 – CABG trial (randomized): monitoring of cerebral oximetry and intervening for cerebral desaturations associated with less major organ dysfunction post-operatively.³

• Baseline cerebral oxygen saturation (prior to and in between inductions) may correlate with LV dysfunction and hemodynamic status.

Cerebral Oximetry

• Cerebral oximetry, otherwise known as near-infrared spectroscopy (NIRS), measures regional cerebral tissue oxygen saturation (rSO2) at the microvascular level
• provides rSO2 values continuously and noninvasively
Example of repetitive inductions and terminations, to allow for brief entrainment mapping (no mechanical support)
pLVAD Devices: Impella 2,5™
Electromagnetic Interference (EMI)

- Can occur when a magnetic-based mapping system (Carto) is used in conjunction with the magnet-based Impella pLVAD.
- Can occur during sinus rhythm (substrate) and entrainment mapping.
- Locations most likely to result in EMI are adjacent to the outflow tracts.
- The frequency and severity of EMI is relatively predictable.
- Appears to be both a “dose” and distance related phenomenon.

During retrograde mapping, electrical noise on the mapping electrogram channels – presumably because of the proximity of the shaft of the mapping catheter to the pLVAD motor in the proximal aorta.

pLVAD Devices: Tandem Heart™
pLVAD Devices: Tandem Heart™
pLVAD Devices: Levitronix™, Cardio Help™
Levitronix Centrimag™ pVAD
Peripheral arteries status
pLVAD Devices: iVAC 3L™
pLVAD Devices: iVAC 3L™
pVADs for VT ablation support – Homolka hospital clinical data

- Catheter Approach:
 - Epicardial (sub-xyphoid puncture)
 - Endocardial
 - Retrograde Aortic
 - Transseptal

- pVAD insertion (iVAC 3L; CardioHelp; Centrimag; Tandem Heart)

- CARTO/NavX electroanatomical mapping

- Irrigated RF Ablation Catheter

- Regional High-Density Mapping ("Penta-array" catheter)
CASE REPORT

- 41 y/o man, DCMP (post myocarditis), LV EF 18%; ICD 2010
- Repeated ICD storm December 2010 and January 2011; Incessant VTs since the end of January 2011 pre-shock
- AADs without effect and substrate mapping and ablation procedure in outside hospital January and February 2011
 - LV endocardial mapping
 - Ablation using an irrigated RFA catheter
- Due to incessant VTs → pVAD **Tandem Heart** - hemodynamic support
VTs induced during 1st EPS
1st procedure – epi/endocardial substrate map
2nd procedure – epi/endocardial substrate map

- Two weeks after repeated ICD shocks and incessant VT have been detected
- pVAD *again* was used (Centrimag ECMO)
- General anesthesia, Epi/Endo approach
1st procedure – epi/endocardial substrate map
2nd procedure – epi/endocardial substrate map
Characteristics of the patient group

14 pts (all men) ø age 64.8 y. (T. H.)
12 pts (all men) ø age 71.4 y. (LEVI)
3 pts (all men) ø age 62.6 y. (Cardio Help)
1 pt man age 68 y. (Lifebridge)
3 pts (all men) ø age 63.2 y. (P. C.)
1 pt man age 58 y. (Impella 2,5)
29 pts (all men) ø age 72.4 y. (B. P.)

• ø LV EF 18.1 % pVADs
 25.4 % Balloon Pump

• 42 pts post MI (anterior 24, inferior 10, infero-base 8)
 21 pts DCMP

• all pts with ICD - primary prevention 44
• Arrhythmogenic storm 48
 incessant 15
Characteristics of the patient group

- Time of procedure: Ø 6.7 hours
- Number of VTs: Ø 4 (2 – 10)
- CL of VTs: Ø 291 ms (224 – 526 ms)
- Epicardial approach: 26 pts (1 failure)
- Multispine catheter: 14 pts po IM
- All VT eliminated in: 44 pts (70%)
- VT during procedure: Ø 76 minutes
- Total time on pVAD: Ø 62 hours
- Recurrence of VT: 9 pts (Ø follow-up 34 m.)
 - Heart Mate LVAD: 2 pts
 - Alcohol + Bi RF: 5 pts
CONCLUSION

- Peripheral Ventricular Assist Devices: useful for temporary hemodynamic support during incessant and unstable VT

- They facilitates careful mapping and ablation using a number of strategies:
 - Entrainment mapping
 - Dense mapping of late potentials

- Facilitate high-density mapping of the extensive substrate, help to identify specific potentials and also good entrainment sites

- pVAD for VT ablation remains to be defined with additional experience
• Is the pLVAD approach safe?
 – Peripheral arterial status
 – Arterial insufficiency of critical organs

• How effective is the pLVAD? In which patients should the pLVAD be used?
 – Does the pLVAD improve the success of VT ablation?
 – Cost effectiveness?
 – Will the availability of pLVAD increase VT ablation utilization?
Acknowledgment

- Štěpán Královec
- Lucie Šedivá
- Jan Škoda
- Jan Petrů
- Petr Ošťádal
- Vivek Y. Reddy
- Srinivas Dukkipati
- Andre d’Avila
- Humera Ahmed
CONCLUSION - stratification

- Mechanical support system we consider always when patient’s LV EF is less than 25 %
 - LV EF 20 – 25 % → Balloon pump for SR substrate map
 - LV EF 15 – 25 % → pVAD transaortic system (Impella 2,5; iVAC 3 L)
 - LV EF 10 – 20 % → pVAD high output (Centrimag, T.H.)
 - Incessant VT → always high output pVADs
 - „Ultrafast“ VTs, Polymorphic VTs, VF ????