AT1 RECEPTOR BLOCKADE ATTENUATES INSULIN RESISTANCE AND MYOCARDIAL REMODELING IN RATS WITH DIET-INDUCED OBESITY

Federal University of Mato Grosso do Sul, Campo Grande, Brazil
Sao Paulo State University, Botucatu Medical School, Brazil

There is not any conflict of interest regarding the current presentation.
BACKGROUND
Cardiac remodeling

- Adaptive process to maintain myocardial performance in response to stress conditions

- Cardiac remodeling involves myocyte hypertrophy, interstitial fibrosis and molecular modifications

Cohn JN, Ferrari R, Sharpe N. J Am Coll Cardiol, 2000;35(3):569-82
Cardiac remodeling

• Differential molecular mechanisms can interact in multiple points of the cytosol in cardiac remodeling

• Important connection (cross-talk) between the signal transduction pathways that mediate insulin and angiotensin II actions in the heart

Cardiac Remodeling and Insulin Resistance

Regulation of insulin signaling

- Insulin actions are highly regulated by several factors.

- Regulatory mechanisms attenuate metabolic signaling from insulin stimuli by decreasing Tyrosine phosphorylation of proteins members from insulin pathway, as insulin receptor (IR), insulin receptor substrate (IRS) and phosphatidilinositol 3-kinase (PI3K) messenger.

- **Insulin resistance** is a common pathological state in which target cells fail to respond to normal stimuli from circulating insulin.
Molecular mechanisms of angiotensin II signaling

- Elevations in angiotensin II (Ang-II) contribute to stimulation of Ang-II type 1 (AT1) receptor: remodeling and insulin resistance in the heart

Cross-talk between Ang-II and insulin in **Obesity**

- Clinical studies/ genetic models of **obesity** (*Zucker rats)*:
 - Interventions with ACE inhibitors or AT1 receptor blockade:
 - attenuation of metabolic and endocrine disorders;
 - normalization of arterial pressure as well as remodeling and insulin resistance in the heart

- Ang-II and insulin interaction in models of diet-induced obesity

 Ernsberger et al.; Am J Hypertens. 2007;20(8):866-74
 Carvalheira et al.; Endocrinology. 2003;144(12):5604-14
HYPOTHESIS

- Hypercaloric diet-induced obesity has been associated with metabolic and cardiovascular disorders, including remodeling and insulin resistance in the myocardium.
OBJECTIVE
OBJECTIVE

• To evaluate the influence of angiotensin-II type I (AT1) receptor blocker losartan on insulin receptor/ phosphatidylinositol 3-kinase pathway and myocardial remodeling in rats with diet-induced obesity
METHODS
Animals and experimental design

Wistar-Kyoto rats (60 days-old)

Control group (C)

Obese group (OB)

• 30 Weeks

• 5 Weeks

Experimental period:

- C groups: animals submitted to commercial rat chow (3.2 kcal/g)
- OB groups: animals submitted to hypercaloric diet (4.6 kcal/g)
- L groups: groups treated with Losartan (30 mg/kg/day)
Nutritional and metabolic parameters

- Body weight (g)
- Adiposity (AD):
 \[AD = \left[\text{epididymal fat (EF) + retroperitoneal fat (RPF)} \right] \times 100 \]
 \((\text{body weight - sum of fat pads}) \)
- Glycemia was obtained from glucose tolerance test
- Insulin concentration (ELISA)

Cardiovascular parameters

- Systolic blood pressure (SBP) was assessed, using a noninvasive tail-cuff method (plethismography)
- Morphological study integrated myocyte cross-sectional area and collagen interstitial fraction determination
Cardiovascular parameters

• Molecular expression of following proteins (Western blot):
 - **β subunit of insulin receptor (βRI)**
 - antibodies against βRI (sc-711) and phospho-\(Tyr^{1162}\)-βRI (sc-25103)
 - **p85 subunit of phosphatidylinositol 3-kinase (p85/PI3-K)**
 - antibodies against p85/PI3K (sc-1637) and phospho-\(Tyr^{508}\)-p85/PI3K (sc-12929)
 - Protein levels were normalized to those of GAPDH (6C5, sc-32233, Santa Cruz Biotechnology)

Martinez et al.; Med Sci Monit 2010; 16(12):BR374-83
Results were evaluated by two-way analysis of variance (ANOVA).

When significant differences were found (p<0.05), the post hoc Tukey’s multiple comparisons test was carried out.

The level of significance was considered to be 5%.

Bayley; J Am Stat Assoc 1977; 72: 469-78

Norman & Streiner; Biostatistics: the bare essentials. 1994
RESULTS
Nutritional, metabolic and cardiovascular profile

Table 1. Nutritional, metabolic and cardiovascular results according groups

<table>
<thead>
<tr>
<th>Variables</th>
<th>C</th>
<th>OB</th>
<th>CL</th>
<th>OBL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight (g)</td>
<td>553 ± 40</td>
<td>644 ± 45 *</td>
<td>552 ± 44</td>
<td>645 ± 63 †</td>
</tr>
<tr>
<td>Adiposity (%)</td>
<td>6.0 ± 1.0</td>
<td>12.0 ± 2.3 *</td>
<td>6.4 ± 1.3</td>
<td>11.3 ± 2.3 †</td>
</tr>
<tr>
<td>Glycemia (AUC)</td>
<td>26,345±1,935</td>
<td>34,841±1,836 *</td>
<td>26,520±1,840</td>
<td>31,300±1,836</td>
</tr>
<tr>
<td>Insulin (ng/dL)</td>
<td>1.64 ± 0.41</td>
<td>2.89 ± 0.37 *</td>
<td>1.03 ± 0.21 *</td>
<td>2.06 ± 0.20 # †</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>115.3 ± 4.5</td>
<td>124.0 ± 9.7 *</td>
<td>108.7 ± 7.6 *</td>
<td>112.2 ± 13.9 #</td>
</tr>
</tbody>
</table>

Results in mean±standard error; AUC: area under curve of responses to glycemic tolerance test; SBP: systolic blood pressure; * p<0.05 vs C; # p<0.05 vs OB group; † p<0.05 vs CL group; ANOVA and Tukey’s test.
Histological parameters of the heart

Figure 1. Morphometric analysis of left ventricle; (A) histological sections stained with hematoxylin-eosin; (B) myocyte cross-sectional area, according group; results in mean and standard-error; * p<0.05 vs C group; # p<0.05 vs OB group; ANOVA and Tukey’s test
Figure 2. Morphometric analysis of left ventricle; (A) histological sections stained with picro-sirius red; (B) interstitial collagen fraction according groups; results in mean and standard-deviation; * p<0.05 vs C; # p<0.05 vs OB; † p<0.05 vs CL; ANOVA and Tukey’s test
Figure 3. Protein levels of insulin receptor in cardiac muscle analyzed by Western blotting. (A) \(\beta \)-subunit of insulin receptor (\(\beta Im \)); \(\beta Im \) protein levels normalized to the GAPDH levels. (B) phospho-Tyr\(^{1162} \)-\(\beta Im \) expression; protein levels normalized to the \(\beta Im \) total levels; results in mean and standard-deviation; * \(p < 0.05 \) vs C; # \(p < 0.05 \) vs OB; † \(p < 0.05 \) vs CL; ANOVA and Tukey’s test.
Figure 4. Protein levels of p85 subunit of phosphatidylinositol 3-kinase (PI3K) in cardiac muscle analyzed by Western blotting. (A) PI3K expression; PI3K protein levels normalized to the GAPDH levels. (B) phospho-Tyr508-PI3K expression; protein levels normalized to the PI3K total levels; results in mean and standard-error; * p<0.05 vs C; # p<0.05 vs OB; † p<0.05 vs CL; ANOVA and Tukey’s test.
CONCLUSION

• Losartan attenuates insulin resistance and myocardial remodeling in obese rats.

Financial support: FAPESP