3D-Electroanatomic mapping-guided endomyocardial biopsy findings in patients with Brugada syndrome

Maurizio Pieroni, MD, PhD

Cardiovascular Department
San Donato Hospital, Arezzo, Italy
Conflict of interest and funding

✧ No conflict of interest to disclose
✧ The study was funded by the Telethon Grant GGP10186 “Identification of genetic, electroanatomic and structural predictors of malignant ventricular arhythmias in patients with Brugada syndrome” to Dr. Pieroni
Background

PRIMARY CARDIOMYOPATHIES
(predominantly involving the heart)

Genetic

Mixed*

Acquired

An AL
Clin
Qual
Trans

HCM
ARVC/D
LVNC

PRKAG2
Danon
Glycogen storage
Conduction Defects
Mitochondrial myopathies

Ion Channel Disorders
LQTS Brugada SQTS CVPT Asian SUNDS

DCM
Restrictive (non-hypertrophied and non-dilated)

Inflammatory (myocarditis)
Stress-provoked (“tako-tsubo”)
Peripartum
Tachycardia-induced
Infants of insulin-dependent diabetic mothers

Council on Clinical Cardiology and Council on Quality of Care and Outcomes Research
Background

- It remains unclear whether:
 - Structural myocardial changes are the substrate of corresponding electrophysiological abnormalities
 - Structural myocardial changes involve the RVOT considered the origin of ECG abnormalities and ventricular arrhythmias
Background

“Endomyocardial biopsies were performed in the septal-apical region………….”
Background

- 3D-EAM guided endomyocardial biopsy has been recently introduced as a valuable technique to investigate the histologic substrate of low-voltage areas in:
 - Clinically suspected ARVC*
 - Myocarditis in RV ventricular arrhythmias **
 - Concealed cardiomyopathies in athletes***

***DelloRusso, Pieroni et al, Heart Rhythm 2011
RV 3D-EAM-guided EMB
RV 3D-EAM
In the present study we aimed:

- To identify the presence and prevalence of RV low voltage areas at 3D-EAM in BrS
- To investigate the myocardial substrate of these areas and to compare these findings with clinical and genetic features
Methods

- 13 consecutive patients (11M, 49±8 year-old) with BrS according to current criteria
- Spontaneous (n=9) or after flecainide challenge (n=4) type I ECG pattern in all patients
- Clinical presentation included sustained polymorphic ventricular tachycardia in 7 patients, syncope in 3, while 3 patients were asymptomatic
Methods

- All patients were submitted to:
 - 3D-EAM
 - 3D-EAM-guided endomyocardial biopsy*
 - Programmed electrical stimulation
 - Endomyocardial biopsy were processed for histology and immunohistochemistry

* In patients with normal 3D-EAM, biopsies were drawn from both septal-apical region and right ventricular outflow tract (RVOT).
3D-EAM

- RV 3D-EAM were obtained by the CARTO system using a 7F 4-mm tip Navistar catheter
- We generated an accurate 3D-EAM, reflecting the shape evidenced by RV angiography sampling at least 150 points in each patient
- Electroanatomic scar definition: ≥3 adjacent points with bipolar signal amplitude <0.5 mV
 - Electroanatomic scar tissue=amplitude <0.5 mV
 - Electroanatomic normal tissue=amplitude ≥1.5 mV
The anatomical distribution of the pathological areas was evaluated dividing the RV voltage map into five segments:

- RV outflow tract (RVOT)
- Free (anterolateral) wall
- Inferior and postero-basal segment
- Apex
- Interventricular septum
Pathology

Myocarditis: T-lymphocyte infiltration (>14/mm²) in the presence of cytotoxic (CD8+) and/or activated (CD45RO+) lymphocytes

ARVC: Extensive fibrofatty myocardial atrophy with >3% of fat; >40% fibrous tissue; residual myocytes <45% of the specimen at morphometric analysis*

Cardiomyopathic changes: Hypertrophy, diffuse vacuolization, cytoplasm degeneration of myocytes

* Basso et al Eur Heart J 2008
Results 3D-EAM

- Abnormal RV 3D-EAM in 11 pts (84%)
 - 4 RVOT + free wall
 - 2 RVOT + posterobasal and inferior wall
 - 2 isolated RVOT
 - 2 free wall
 - 1 posterobasal wall
- Normal RV 3D-EAM in 2 pts
Results EMB

- Pathologic findings in 9 patients with abnormal EAM (81%)
 - **Fibrofatty replacement** in 2 patients with RVOT low-voltage areas
 - **Myocarditis** in 5 patients with low-voltages in the free wall (in 3 cases with RVOT involvement)
 - **Cardiomyopathic changes** in 2 patients with septal RVOT and posterobasal segment low-voltage areas
- **Normal myocardial tissue** was observed in biopsies from 2 patients with normal 3D-EAM, and in 2 patients with RVOT abnormal voltage areas
<table>
<thead>
<tr>
<th>N</th>
<th>Clinical Present</th>
<th>ECG TYPE</th>
<th>CARTO Abnormal Areas</th>
<th>Abnormal Area %</th>
<th>Mapped points</th>
<th>PES</th>
<th>Histology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PVT</td>
<td>2</td>
<td>RVOT</td>
<td>1.5</td>
<td>154</td>
<td>-</td>
<td>Fibro-fatty repl</td>
</tr>
<tr>
<td>2</td>
<td>SYNC</td>
<td>1</td>
<td>Free Wall</td>
<td>4</td>
<td>180</td>
<td>+</td>
<td>Myocarditis</td>
</tr>
<tr>
<td>3</td>
<td>PVT</td>
<td>1</td>
<td>RVOT+Free Wall</td>
<td>10</td>
<td>180</td>
<td>-</td>
<td>Myocarditis</td>
</tr>
<tr>
<td>4</td>
<td>PVT</td>
<td>2</td>
<td>RVOT+Free Wall</td>
<td>11</td>
<td>190</td>
<td>-</td>
<td>Myocarditis</td>
</tr>
<tr>
<td>5</td>
<td>PVT</td>
<td>1</td>
<td>Septal RVOT</td>
<td>3,4</td>
<td>176</td>
<td>-</td>
<td>Cardiomyopathy</td>
</tr>
<tr>
<td>6</td>
<td>SYNC</td>
<td>1</td>
<td>Postero-basal</td>
<td>3</td>
<td>175</td>
<td>+</td>
<td>Cardiomyopathy</td>
</tr>
<tr>
<td>7</td>
<td>ASYMPT</td>
<td>1</td>
<td>Normal</td>
<td>0</td>
<td>200</td>
<td>+</td>
<td>Normal</td>
</tr>
<tr>
<td>8</td>
<td>PVT</td>
<td>2</td>
<td>Free Wall</td>
<td>28</td>
<td>220</td>
<td>+</td>
<td>Myocarditis</td>
</tr>
<tr>
<td>9</td>
<td>SYNC</td>
<td>1</td>
<td>RVOT+Free Wall</td>
<td>19</td>
<td>238</td>
<td>+</td>
<td>Fibro-fatty repl</td>
</tr>
<tr>
<td>10</td>
<td>PVT</td>
<td>1</td>
<td>Normal</td>
<td>0</td>
<td>250</td>
<td>-</td>
<td>Normal</td>
</tr>
<tr>
<td>11</td>
<td>ASYMPT</td>
<td>1</td>
<td>RVOT+posterobasal</td>
<td>4,8</td>
<td>260</td>
<td>-</td>
<td>Normal</td>
</tr>
<tr>
<td>12</td>
<td>PVT</td>
<td>1</td>
<td>RVOT+posterobasal</td>
<td>12</td>
<td>270</td>
<td>-</td>
<td>Normal</td>
</tr>
<tr>
<td>13</td>
<td>ASYMPT</td>
<td>1</td>
<td>RVOT+Free Wall</td>
<td>3,5</td>
<td>300</td>
<td>-</td>
<td>Myocarditis</td>
</tr>
</tbody>
</table>
Patient N 9 M, 59 ys old
Syncope at rest

Residual myocytes 50%
Patient N. 7
F, 36 ys old
Asymptomatic
Results

- No significant correlation was observed between clinical and ECG features and neither 3D-EAM nor histologic findings
- Programmed electrical stimulation was positive in 5 patients (38%) inducing VF in 3 patients and sPVT in 2 patients
- Among these 5 pts, 2 had normal histology, 2 had myocarditis and 1 cardiomyopathic changes
Current limitations of the study

- Small population
- Genetic analysis still ongoing
Patient N. 3 F, 55 yrs old Pre-syncopal sPVT

CACNA1C mutation Exon 46 T1918M
Conclusions

- We found a high prevalence of abnormal 3D-EAM among BrS patients, with RVOT being the most frequently involved segment.
- Abnormalities of 3D-EAM reflected an underlying myocardial disorder in 81% of patients, thus reinforcing the notion that BrS is not a pure electrical disorder.
Conclusions

- Our findings further support the notion that RVOT harbors the arrhythmogenic substrate in BrS
- Our findings support the so-called “depolarization disorder” or “conduction delay” hypothesis on the genesis of ECG pattern and arrhythmic substrate
Conclusions

- The identification of abnormal voltage areas and the corresponding myocardial substrate may influence both prognosis and treatment, including ablation strategies.
- Future studies on BrS should better characterize patients through a comprehensive imaging, electrophysiologic, genetic and structural evaluation.
“The Chimera of Arezzo”
Structural Abnormalities

Electrophysiological Mechanisms

Genetic Defects

“The Chimera of Arezzo”
In future studies we should adopt a different approach: we should stop looking for a single common causal mechanism but rather focus on distinctive rather than common features of BrS patients.
A different approach