Pathogenetic mechanisms of vasospastic angina

Hiroaki Shimokawa, MD, PhD
Professor and Chairman
Department of Cardiovascular Medicine
Tohoku University, Sendai, Japan.
(No COI to disclose)
Important Roles of Coronary Spasm in the Pathogenesis of IHD

Variant angina
Rest angina
Rest & effort angina
Unstable angina
Coronary atherosclerosis

DES-induced spasm
Effort angina
AMI
Post-MI angina
Sudden death

Coronary spasm
Coronary Spasm induced in Atherosclerotic Coronary Artery in Pigs in Vivo

Control
Histamine
Serotonin

(Shimokawa et al. *Science*. 1983;221:560-562.)
Topological Correlation between Spastic Site and Atherosclerotic Site in a Porcine Model of Coronary Spasm

(Shimokawa et al., Science 1983; 221: 560-562.)
Coronary Spasm induced at Inflammatory Coronary Lesion in Pigs in Vivo

Nitroglycerin

Serotonin

Molecular Mechanisms of Coronary Spasm

(Shimokawa H. Trend Pharmacol Sci., 2007;28:296-302.) (Review)
Roles of Rho-kinase Pathway in the Pathogenesis of Cardiovascular Diseases

Agonists (Ang II, 5-HT, Thrombin, ET-1, NE, PDGF, ATP/ADP, Uro II, etc.)

Receptor \(\rightarrow \) G\(\alpha \)\(_{12/13} \rightarrow \) DG/PKC

\(\rightarrow \) Rho \(\rightarrow \) Statins \(\rightarrow \) Ras

\(\rightarrow \) Rac

Rhophillin Rhotekin \(\rightarrow \) PKN

Rho-kinase inhibitors

Rho-kinase

\(\rightarrow \) Myosin phosphatase

\(\rightarrow \) ERM family (ezrin, radixin, moesin)
Adducin, LIM-kinase, etc.

Contraction
Stress fiber formation
Focal adhesion
Migration
Cytokinesis
Hypertrophy
Gene expression

\(\uparrow \) PAI-1, \(\uparrow \) MCP-1, etc.
\(\downarrow \) eNOS, etc.

Cellular responses

Smooth muscle cells
Endothelial cells
Inflammatory cells
Fibroblasts
etc.

(Shimokawa H. *ATVB*. 2005;25:1767-1775.) (Review)
Chemical Structure of Fasudil and Hydroxyfasudil

(Fasudil)

(SO₂N)₃

(NH)

(Phenanthridine)

(Hydroxyfasudil)

(SO₂N)₃

(NH)

(OH)

(Phenanthridine)

Selective Inhibitory Effects of Hydroxyfasudil on Rho-kinase

(Higashi, Shimokawa, et al. Circ Res. 2003;93:767-775.)
Inhibitory Effects of Fasudil on Multivessel Coronary Spasm

Inhibitory Effects of Fasudil on Intractable Coronary Spasm

Control

Nirates・CCBs

Fasudil

Co-existence of Epicardial and Microvascular Spasm

Baseline

ACh 30 µg

ACh 100 µg

ISDN

Female, 58 yrs.

(Sun, Mohri, Shimokawa et al., J Am Coll Cardiol. 2002;39:847-851.)
Co-existence of Epicardial and Microvascular Spasm

Lactate uptake

Changes in epicardial coronary diameter

(14) (41)

Group 1: MVS+(14)
Group 2: MVS−(41)

(Sun, Mohri, Shimokawa et al., J Am Coll Cardiol. 2002; 39: 847-851.)
Inhibitory Effects of Fasudil on Microvascular Angina

(Mohri, Shimokawa, et al., J Am Coll Cardiol. 2003;41:15-19.)
Inhibitory Effects of Fasudil on Microvascular Angina

Saline (n=5)

- Angina: 5%
- ECG, lactate production or both: 5%

Fasudil (n=13)

- Angina: 13%
- ECG, lactate production or both: 12%

(* indicates statistical significance; ** indicates highly significant difference)

(Mohri, Shimokawa et al., J Am Coll Cardiol. 2003; 41: 15-19.)
Enhanced Rho-kinase Activity of Circulating Leukocytes in VSA Patients

(Kikuchi, Shimokawa, et al. JACC. 2011;58:1231-1237.)
Rho-kinase Activity of Circulating Leukocytes in VSA Patients

(Kikuchi, Shimokawa, et al. JACC. 2011;58:1231-1237.)
Rho-kinase Activity of Circulating Leukocytes in VSA Patients

(Kikuchi, Shimokawa, et al. JACC. 2011;58:1231-1237.)
IVUS Findings of Coronary Spasm

- Thickened sonolucent zone
- Diffuse intimal thickening
- Necrotic core
- Negative remodeling
- Spastic site

Yamagishi M. *JACC*, 1994
Miyano Y. *JACC*, 2000
Hong YJ. *IJC*, 2010

Pre Spasm

IVUS-V
NTG
Spastic site
OCT Findings of Coronary Spasm

Baseline | Provocation | NTG

Intimal bump | Intimal gathering

VSA

Control

(Courtesy by Dr. Atsushi Tanaka)
3D-OCT during Coronary Spasm

(Courtesy by Dr. Atsushi Tanaka)
Intimal Bump / Gathering

VSA
Control

(Intimal bump) 80% vs 0% (P<0.01)
(Intimal gathering) 100% vs 0% (P<0.01)

(Tanaka A, et al. JACC. 2011.)
Problems with Drug-eluting Stents

(1) Long-term prognosis/ Late Thrombosis

- Restenosis: DES 6.7%, BMS 4.5%
- Cardiac death: DES 1.2%, BMS 1.3%
- AMI: DES 1.3%, BMS 1.3%
- Cardiac death/Non-fatal AMI: DES 4.9%, BMS 4.1%

(2) DES-induced coronary spasm

Control

ACh ic後

(Maekawa K. et al. Circulation. 2006;113:e850-851.)

(Pfisterer M. et al. JACC. 2006;48:2584-2591.)
Coronary Hyperconstricting Responses Induced at DES Edges in a Pig in Vivo

Serotonin (100 μg/kg ic)

Hydroxyfasudil + Serotonin

(Shiroto, Shimokawa et al. JACC. 2009;54:2321-2329.)
Pathological Changes at DES Edges in Pigs in Vivo

Microthrombus formation

BMS

PES

Infiltration of inflammatory cells

BMS

PES

(Shiroto, Shimokawa, et al. JACC. 2009;54:2321-2329.)
Up-regulation of Rho-kinase at DES Edges in Pigs in Vivo

Rho-kinase expression

Rho-kinase activity

(Shiroto, Shimokawa, et al. JACC. 2009;54:2321-2329.)
Coronary Spasm induced at a DES Edge in a Patient with CAD

Control

ACh

Fasudil + ACh

NTG

Inhibitory Effects of Long-acting Nifedipine on DES-induced Coronary Changes

Long-acting nifedipine

Inflammation

↑ Rho-kinase express.

↑ Rho-kinase activity

Coronary spasm

(*Shiroto, Shimokawa, et al. JACC. 2009;54:2321-9.)

(Tsuburaya, Shimokawa, et al. EHJ. 2012;33:791-799.)
Japanese Coronary Spasm Association

Foundation: 2006
Participating: 81 hospitals
Secretariat: Tohoku Univ.
Meeting: twice per year
International Collaboration Study on VSA

UK
Prof. Juan Carlos Kaski
(St. George’s University)

Germany
Dr. Peter Ong
Prof. Udo Sechtem (Robert-Bosch-Hospital)

Korea
Prof. Sang Hong Baek
(The Catholic University of Korea)

Italy
Prof. Filippo Crea
(Catholic University of the Sacred Heart)
Prof. Paolo G. Camici
(Vita-Salute San Raffaele University)
Prof. Attilio Maseri
(Heart Care Foundation)

Australia
Prof. John Beltrame
(University of Adelaide)