In vivo detection of activated platelets allows characterizing rupture of atherosclerotic plaques with molecular magnetic resonance imaging in mice

Constantin von zur Mühlen
University Heart Center Freiburg, Germany
No disclosures
Imaging targets in atherosclerosis

- Adhesion molecules
- Macrophages
- MMPs and Cathepsin
- Lipid core and Fibrous cap
- Angiogenesis
- Thrombosis
- Fibrin
- Platelets
- Vessel wall
- Tissue factor
- Thrombus
- Lipid-rich necrotic core
Targeted imaging in MRI
iron oxide particles:
- different sizes (USPIO, MPIO)
- high payload of iron
- T_2^*-weighted MRI (negative contrast)
- MPIOs: signal effect x50 their own diameter
 -> detection of single particles
Imaging of platelets in carotid artery thrombosis

Fibrinogen binding site

resting platelet

activated platelet

Ligand Induced Binding Sites

MPIO

LIBS single-chain Antibody + MPIO = LIBS-MPIO

A. carotis

MRI

Contrast agent injection
LIBS-MPIO or Control-MPIO

native MRI before contrast agent

MRI after contrast agent

MRI after thrombolysis

50,000 IU/kg urokinase
Imaging of platelets in carotid artery thrombosis

1.) no real plaque rupture, but an artificial model
2.) smaller thrombi?
3.) no established model of plaque rupture

--> non-invasive detection of thrombosis & monitoring of therapy

von zur Muhlen C, von Elverfeldt D et al; Circulation 2008
Model of plaque rupture in ApoE−/− mice

- Injection of contrast agent
- Scan t1
- Scan t2
- Scan t3
- Perfusion
- Histology

Timeline:
- 0 minutes
- 15 minutes
- i + 8
- i + 16
- i + 24

Arteries:
- Common carotid artery
- Internal carotid artery
- External carotid artery

Plaque and ligature

Scratching
MRI of plaque rupture & platelets in ApoE⁻/⁻ mice

LIBS-MPIO

Control-MPIO

Scratching

H1
H2
H3
H4

time

t₁

t₂

t₃
MRI of plaque rupture & platelets in ApoE^{-/-} mice

thrombosis >2%

<table>
<thead>
<tr>
<th></th>
<th>t<sub>-1</sub></th>
<th>t<sub>1</sub></th>
<th>t<sub>2</sub></th>
<th>t<sub>3</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>control-MPIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIBS-MPIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* * p = 0.01
** ** p = 0.05
*** *** p = 0.02

thrombosis <2%

<table>
<thead>
<tr>
<th></th>
<th>t<sub>-1</sub></th>
<th>t<sub>1</sub></th>
<th>t<sub>2</sub></th>
<th>t<sub>3</sub></th>
</tr>
</thead>
<tbody>
<tr>
<td>control-MPIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LIBS-MPIO</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

§ § § p = n.s.
§ § § p = n.s.
§ § § § p = n.s.
Plaque rupture & platelets in ApoE−/− mice

Injured vessel

Contralateral vessel

Averaged MPIOs/section

LIBS-MPIO

control-MPIO

p < 0.01

Averaged MPIOs/section

Injured vessel

Contralateral vessel

p < 0.01
Conclusions and challenges

Conclusions

- LIBS-MPIO allows detection of activated platelets
- Application of a plaque rupture model in ApoE^/-^-mice for molecular MRI is possible
- Needle injury in this model reliably allows induction of atherothrombosis
- Atherothrombosis can be imaged in vivo by LIBS-MPIO
- Detection limit in thrombi <2% of total vessel lumen

Perspectives and challenges

- Very small thrombi and detection limit?
- Transfer from mouse to man
- Human-compatible/non-immunogenic contrast agents
Thank you very much for your attention!

Special thanks to:

Department of Cardiology, Freiburg
- Christoph Bode
- Daniel Dürschmied
- Timo Heidt
- Irene Neudorfer

IGBMC Illkirch/Strasbourg, France
- Jean-Etienne Fabre

Department of Medical Physics, Freiburg
- Dominik v. Elverfeldt
- Dominik Paul
- Mirko Meissner

Department of Cardiovascular Medicine, Oxford
- Robin Choudhury
- Daniel Anthony

Baker Heart Research Institute, Melbourne
- Karlheinz Peter
- Nicole Bassler

DFG Deutsche Forschungsgemeinschaft

Australian Research Council