Physiological Background of Oxygen Uptake Kinetics At Onset, During And After Exercise

Sakakibara Heart Institute

Haruki Itoh, MD, PhD, FACC, FJCC, FESC.

Declaration of Conflict of Interest
None
Oxygen Flow during Exercise

Muscle Activity

O₂ & CO₂ Transport

Ventilation (VA+VD=VE)

Peripheral Circulation

Pulmonary Circulation

Muscles

Heart Blood

Lungs

Vasodilation

Vasodilation

↑ QCO₂

↑ Stroke volume

↑ Tidal volume

↑ QO₂

↑ Heart rate

↑ Respiratory rate

Physiological Response to Exercise

Prof. Karlman Wasserman

Mito. ṪO₂ ṪCO₂

Expired Inspired
Oxygen Uptake (\(\dot{\text{VO}}_2\)) and Cardiac Output

\[\dot{\text{VO}}_2 = \text{CO} \times \text{C(a-v)O}_2 \text{ Difference} \]

- Cardiac Output = Oxygen delivery; Central function
- \(\text{C(a-v)O}_2\) Difference = Oxygen utilization; Peripheral function

\(\dot{\text{VO}}_2\): an index of cardiac output during exercise

\(\text{C(a-v)O}_2\) Difference \(\propto\) %Work load

\(\dot{\text{V}}\text{O}_2\): an index of metabolism, energy, and exercise intensity

1 metabolic equivalent (1 MET) = 3.5ml/min/kg \(\dot{\text{V}}\text{O}_2\)

(\(\dot{\text{V}}\text{O}_2\) of 40 y.o., 70 kg, Caucasian male at sitting position)
Parameters from Cardiopulmonary Exercise Test

VO₂ kinetics during and after exercise
Phase I

Phase II

Phase III

VO₂ deficit

\[\text{\(O_2 \) deficit} \]

\[\text{\(\tau_{on} \)} \]

\[\text{\(\dot{\text{VO}}_2 \)} \]

\[\text{\(\dot{\text{VO}}_2 \) on} \]

\[\text{\(\dot{\text{VO}}_2 \) off} \]

\[\text{\(\tau_{off} \)} \]

\[\text{\(T_{1/2} \)} \]

\[\text{\(\dot{\text{VO}}_2 \) s-s} \]

\[\text{\(O_2 \) debt} \]

Constant Work

\(\dot{\text{VO}}_2 \) Response to the Square Wave Test
Parameters from Cardiopulmonary Exercise Test with Ramp Protocol

Beginning of Ex.
- \(\tau_{on} \)

During Ex. (Steady-state)
- \(\dot{\text{VO}}_2 \) at warm-up

During incremental Ex.
- \(\Delta \dot{\text{VO}}_2/\Delta \text{WR} \), \(\Delta \dot{\text{HR}}/\Delta \text{WR} \), \(\text{VE} \) vs. \(\dot{\text{VCO}}_2 \) slope, Min. \(\text{VE}/\dot{\text{VCO}}_2 \)
- TV-RR curve, OUES (oxygen uptake efficacy slope)

Submaximal Ex.
- AT, PET\(\text{CO}_2 \) at RC point

Maximal Ex. (Peak Ex.)
- Peak \(\dot{\text{VO}}_2 \), Ex time, Peak \(\text{O}_2 \) pulse

Recovery phase
- \(\tau_{off}, T_{1/2} \)

- Work Rate
 - 10～20 watts/min

- Peak \(\dot{\text{VO}}_2 \)
- \(\Delta \dot{\text{VO}}_2/\Delta \text{WR} \)
- \(\dot{\text{VO}}_2 \)
- \(\dot{\text{VO}}_2s-s \)
- \(\tau_{on} \)
- \(\tau_{off} \)
VO₂ Response to the Start of the Exercise

Time constant for VO₂ at the beginning of step exercise

- Cardiac output response
- C(a–v)O₂ response
- Heart rate response
- Vasodilatory response
- Parasympathetic nervous activity
- Endothelial function
Oxygen uptake (VO₂) Response at the Beginning of Ex.

Figure 1. Representative tracings of time course changes of VO₂, mixed venous O₂ saturation (SvO₂), and cardiac output at the onset of 20-watt exercise in a patient whose peak VO₂ was <18.0 ml/min/kg.

Figure 2. Relation of τ of VO₂ with that of cardiac output or with that of AV O₂ difference for a 20-watt work rate. Group A consisted of 6 patients whose peak VO₂ was >18.0 ml/min/kg, and group B consisted of 6 patients whose peak VO₂ was <18.0 ml/min/kg.

Short-term (2W) physical training improves vasodilating capacity and τ_{on} in cardiac patients (POST CABG)

Cardiac output response at the beginning of step exercise

$\Delta \tau_{on}$ (sec)

Δ Culff blood flow (ml/min/100ml tissue)

Endothelial function

$y = -3.2066x - 8.1679$

$R = -0.73$

$p < 0.0001$

\(\dot{V}O_2 \) Response to the Square Wave Test: \(\tau \) on Prolonged with Exercise Intensity

\(\tau \) on

Work rate

\(\begin{align*}
\text{10W} & \quad \text{20W} & \quad \text{40W} & \quad \text{60W} & \quad \text{80W} & \quad \text{120W}
\end{align*} \)

\((\text{sec}) \)

N=6 Normal volunteer
Age: 28±3y

\(\dot{VO}_2 \) Response to the Square Wave Test: \(\dot{VO}_2 \) during Steady-State Exercise

- Cardiac output
- Blood redistribution
- Mechanical exercise efficiency of working muscles

\(\dot{VO}_2 \) during constant exercise
Δ\(\dot{V}O_2/\Delta WR\) and Functional Class

\(\dot{V}O_2\) at rest ↓
\(\dot{V}O_2\) at 20Ws−s ↓
\(\Delta\dot{V}O_2/\Delta WR\) ↓

Data from Itoh H, et al. Jpn Circ J 1992;56:504-508
Change in \dot{VO}_2 at 20w before and after Valve Replacement

MR Patients (NYHA class III)

\dot{VO}_2 (20Ws·s)

ml/min/kg

Before 1 mon. after 6 mon. after

P<0.01
\[\Delta \dot{V}O_2/\Delta WR \]

\[\Delta \dot{V}O_2/\Delta WR \]

\(\dot{V}O_2 \) (Cardiac output) at given WR

\(\dot{V}O_2 \) response to the work

\(\dot{V}O_2 \) increase relative to increase in work rate
Simulation of the Theoretical Relationship: $\dot{\text{VO}}_2$ step and ramp response

$Y = K \left(1 - e^{-t/\tau} \right)$, where K is the steady-state increase in $\dot{\text{VO}}_2$ and τ is a time constant. The $\dot{\text{VO}}_2$ ramp response to 15 W/min exercise was mathematically derived.

A) A longer τ of the step response with an identical K (10ml/min/w) results in a rightward shift of the ramp response. (*solid line; $\tau =$50s, *broken line; $\tau =$80s).

B) A smaller K with an identical time constant ($\tau =$50s) results in a smaller $\Delta \dot{\text{VO}}_2/\Delta \text{WR}$. (*solid line; $K =$10 ml/ min/w, *broken line; $K =$7.5 ml/min/w).

Δ\(\dot{VO}_2\)/ΔWR in Different Ramp Slopes (Normal volunteer)

Peak Work Rate

- 10W/min.
- 20W/min.
- 30W/min.
- 40W/min.

Peak \(\dot{VO}_2\)

- 10W/min.
- 20W/min.
- 30W/min.
- 40W/min.

\(\Delta \dot{VO}_2/\Delta WR\)

- 10W/min.
- 20W/min.
- 30W/min.
- 40W/min.

: P<0.01 *:** P<0.05

Ono T, et al. 1999
Changes of $\Delta \dot{VO}_2/\Delta WR$ in Normal, Ischemic, and Heart Failure

Normal
- Skeletal muscle recruited \uparrow
- Respiratory muscle work \uparrow
- Body temperature \uparrow
- Bohr effect

Angina pectoris
- Ischemia

Heart failure
- Impaired CO increase
Ischemia and $\Delta \dot{V}O_2/\Delta WR$

A Sample of $\dot{V}O_2$ and ST Changes in Multi-vessel Disease

$\Delta \dot{V}O_2/\Delta WR$ before ST dep

$\Delta \dot{V}O_2/\Delta WR$ after ST dep

$\dot{V}O_2$

ST level

ST -1.0mm

Total Extent Score 429/1000
Δ\(\dot{V}O_2/\Delta WR\) and Prognosis Heart Disease Patients

Parameters in Recovery Phase

\[\tau_{\text{off}} \quad (T_{1/2}) \]

- Time constant (Half time) for \(\dot{\text{VO}_2} \) after the exercise
- Cardiac output decrease
- O₂ deficit during Ex.
- Heart rate decrease
- Parasympathetic nervous activity
$T_{1/2}$ and Severity of Heart failure

\(\tau_{\text{on}} \) and \(\tau_{\text{off}} \) in Low and High Intensity Step Exercise Test

23 MI patients did Low and high intensity exercise.

TC during exercise: \(\tau_{\text{on}} \)

TC during recovery: \(\tau_{\text{off}} \)

(1) The gas exchange kinetics were influenced by the intensity of exercise.

(2) \(\tau_{\text{off}} \) reflected \(\tau_{\text{on}} \) for \(\text{VO}_2 \) and \(\text{VCO}_2 \), but not for \(\text{VE} \).

Low: 80% of AT High: AT+(peak-AT)x0.4

$T_{1/2}$ in Patients with and without Coronary Artery Disease

$\Delta VO_2 / \Delta WR$ after / before ST dep
Slope Ratio Across ST-dep

\[p < 0.001 \]

$T_{1/2} \dot{V}O_2$ vs
Slope Ratio Across ST-dep

\[r = -0.65 \quad p < 0.001 \]

Parasympathetic nervous activity ↓
Heart rate ↑

Endothelial function
Afterload ↓
Stroke volume ↑
Cardiac output ↑

Parasympathetic nervous activity ↑
Sympathetic ↓
Muscle pump ↓
Heart rate ↓
Venous return ↓
Stroke volume ↓
Cardiac output ↓

\[\Delta VO_2/\Delta WR \uparrow \]

\[T_{on} \downarrow \]

\[T_{off}\cdot T_{1/2} \downarrow \]

Cardiac output
Blood redistribution

\[\dot{V}O_2 \text{ at given WR} \uparrow \]

Itoh H, 2012