CMR/CT Evaluation of Pericardial Disease

Bernard P. Paelinck, MD, PhD
Antwerp University Hospital
no disclosures
1. The normal pericardium

< 0.4 cm thickness
< 15 – 35 ml
The normal pericardium

CT

CMR

Rajiah JCCT 2010
Imaging of pericardial diseases

<table>
<thead>
<tr>
<th></th>
<th>echo</th>
<th>CT</th>
<th>CMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>availability</td>
<td>++++</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>soft-tissue contrast</td>
<td>+</td>
<td>++</td>
<td>++++</td>
</tr>
<tr>
<td>temporal resolution</td>
<td>++++</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>physiology</td>
<td>++++</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>extracardiac</td>
<td>+</td>
<td>++++</td>
<td>+++</td>
</tr>
</tbody>
</table>

Limitations:
- echogenicity
- radiation/iodinated contrast
- contraindications
2. Pericardial disease

a. Pericardial effusion
b. Constrictive pericarditis
c. Congenital abnormalities
d. Pericardial tumor
a. Pericardial effusion

1. localization
2. (limited) characterization

<table>
<thead>
<tr>
<th></th>
<th>HU</th>
</tr>
</thead>
<tbody>
<tr>
<td>serous</td>
<td><20</td>
</tr>
<tr>
<td>exsudate</td>
<td>20-60</td>
</tr>
<tr>
<td>hemorrhage</td>
<td>variable</td>
</tr>
</tbody>
</table>

CT

Lopez Costa, Sem Roentgen 2008
Pericardial effusion

CMR

1. localization
2. characterization

<table>
<thead>
<tr>
<th></th>
<th>T1 signal</th>
<th>SSFP</th>
</tr>
</thead>
<tbody>
<tr>
<td>transudate</td>
<td>↓</td>
<td>↑</td>
</tr>
<tr>
<td>exudate</td>
<td>↓↑</td>
<td>↓↑</td>
</tr>
<tr>
<td>hemorrhage</td>
<td>↓↑</td>
<td>↓↑</td>
</tr>
</tbody>
</table>
Pericardial effusion

CT

Lopez Costa, Sem Roentgen 2008

CMR

Paelinck, NEJM2003

tamponade
Keypoints pericardial effusion

<table>
<thead>
<tr>
<th>CT</th>
<th>CMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>cause/clues to etiology</td>
<td>cause/clues to etiology</td>
</tr>
<tr>
<td>(IVS motion/collapse)</td>
<td>IVS motion/collapse</td>
</tr>
</tbody>
</table>

CAVE: not appropriate for clinically unstable patients
b. Constrictive pericarditis

CMR

SSFP

thickness >4 mm

accuracy 93%

(Masui, Radiology 1992)

real-time SSFP

septal bounce

sens. 81%, spec. 100%

(Giorgi, Radiology 2003)

LGE

LGE thickness ≥ 3 mm

sens. 86%, spec. 80% to predict reversibility

(Feng, Circ 2011)
Constrictive pericarditis

CT

Rajiah, JCCT 2010

thickness >4 mm
(Isner, Ann Intern Med 1982)
calcification
Keypoints constrictive pericarditis

<table>
<thead>
<tr>
<th>CT</th>
<th>CMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>thickness + localization</td>
<td>thickness + localization</td>
</tr>
<tr>
<td>calcification</td>
<td>inflammation (LGE)</td>
</tr>
<tr>
<td></td>
<td>functional (cine)</td>
</tr>
</tbody>
</table>

CAVE: constrictive pericarditis may be present without pericardial thickening
(Taljera, Circ 2003)
c. Partial/global absence of pericardium

CT

CMR

Rajiah, JCCT 2010

0.002-0.004%

>left side (Yamano, Circ J 2004)
Pericardial cyst

CT

CMR

Rajiah, JCCT 2010

>> incidental

>> right anterior cardiophrenic angle (70%)
d. Pericardial tumors

CMR

metastatic disease (thymoma)
Pericardial tumors

CMR

T1

T2

T2 FS

cavernous haemangioma

courtesy P. Van Herck
Pericardial tumors

CMR

SSFP

T1

T2

hematoma
Keypoints pericardial tumors

Echo = initial investigation (cfr. pericardial effusion)

<table>
<thead>
<tr>
<th>CT</th>
<th>CMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>extracardiac lesions</td>
<td>local extent</td>
</tr>
<tr>
<td>-</td>
<td>characterization (?) (T1/T2)</td>
</tr>
<tr>
<td>-</td>
<td>DD hematoma, effusion (first pass)</td>
</tr>
</tbody>
</table>

Differentiation:
Benign: encapsulated, well defined
Malign: invasion/tethering of soft tissue/great vessel
Conclusions and keypoints

CT and CMR are complementary to echocardiography

CT
1. clear delineation of pericardium
2. calcification
3. extracardiac lesions

CMR
1. superior tissue characterization, except for calcification
2. haemodynamic assessment with high temporal resolution
3. preferred technique for constrictive pericarditis